比特派官网网址安卓下载|pars

作者: 比特派官网网址安卓下载
2024-03-17 02:43:45

PARS中文(简体)翻译:剑桥词典

PARS中文(简体)翻译:剑桥词典

词典

翻译

语法

同义词词典

+Plus

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录

/

注册

中文 (简体)

查找

查找

英语-中文(简体)

pars 在英语-中文(简体)词典中的翻译

parsnoun [ C ]

  medical

  specialized uk

Your browser doesn't support HTML5 audio

/pɑːs/ us

Your browser doesn't support HTML5 audio

/pɑːrz/ plural partes

Add to word list

Add to word list

a Latin word meaning "part", used in medical names and descriptions

(拉丁语,用于医学术语)部分

(pars在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)

C1

pars的翻译

中文(繁体)

(拉丁語,用於醫學術語)部分…

查看更多内容

需要一个翻译器吗?

获得快速、免费的翻译!

翻译器工具

pars的发音是什么?

在英语词典中查看 pars 的释义

浏览

parricide

parrot

parrot-fashion

parry

pars

parse

Parsi

parsimonious

parsimoniously

“每日一词”

token

UK

Your browser doesn't support HTML5 audio

/ˈtəʊ.kən/

US

Your browser doesn't support HTML5 audio

/ˈtoʊ.kən/

something that you do, or a thing that you give someone, that expresses your feelings or intentions, although it might have little practical effect

关于这个

博客

Renowned and celebrated (Words meaning ‘famous’)

March 13, 2024

查看更多

新词

inverse vaccine

March 11, 2024

查看更多

已添加至 list

回到页面顶端

内容

英语-中文(简体)翻译

©剑桥大学出版社与评估2024

学习

学习

学习

新词

帮助

纸质书出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

开发

开发

开发

词典API

双击查看

搜索Widgets

执照数据

关于

关于

关于

无障碍阅读

剑桥英语教学

剑桥大学出版社与评估

授权管理

Cookies与隐私保护

语料库

使用条款

京ICP备14002226号-2

©剑桥大学出版社与评估2024

剑桥词典+Plus

我的主页

+Plus 帮助

退出

词典

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

翻译

语法

同义词词典

Pronunciation

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录 /

注册

中文 (简体)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

关注我们

选择一本词典

最近的词和建议

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

语法与同义词词典

对自然书面和口头英语用法的解释

英语语法

同义词词典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

词典+Plus

词汇表

选择语言

中文 (简体)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

内容

英语-中文(简体) 

 Noun

Translations

语法

所有翻译

我的词汇表

把pars添加到下面的一个词汇表中,或者创建一个新词汇表。

更多词汇表

前往词汇表

对该例句有想法吗?

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

蛋白酶激活受体_百度百科

活受体_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10蛋白酶激活受体播报讨论上传视频生物学术语本词条缺少概述图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!蛋白酶激活受体(protease activated receptors, PARS)属于G蛋白偶联受体家族成员,胞外信号调节激酶(extracellar signal-regulated kiase, ERK1/2)信号转道通路, 引起细胞核反应, 激活多种细胞转录因子。中文名蛋白酶激活受体外文名protease activated receptors简    写PARS学    科生物学性    质蛋白质位    置细胞表面特    点有七次膜跨越它是细胞表面的一种G蛋白偶联受体,同样具有单链七次跨膜的共性。发现有四个受体即PAR1 ,PAR2,PAR3,PAR4.除了PAR2是胰酶受体,其他的三个都是凝血酶受体。它区别于其他G蛋白偶联受体的地方在于:一般的G蛋白偶联受体都是在被细胞外配体结合剪掉片段结合后引发G蛋白的磷酸化,然后自身也被磷酸化后进入细胞,再被磷酸化后和配体分离,再次运到细胞表面,重新使用。但是绝大多数PARs-配体复合物在进入细胞后被溶酶体消化降解,不再重新使用。它的一些生理功能如下:人体内几乎所有细胞都有不同类型PARS的存在与表达, 其生理功能非常广泛, 包括诱发凝血反应、促进细胞分裂与增殖、释放炎症介质或细胞因子调控局部炎症反应、收缩子宫、胃肠道和气道平滑肌、调节血管张力等. 激活PAR能够刺激胞浆磷脂酶C、A 和D, 激活蛋白激酶C、有丝分裂原激活蛋白激酶(MAPK)和酪氨酸蛋白激酶, 暂时升高胞浆游离钙离子的浓度, 开放细胞膜离子通道, 并促进细胞生长。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

PARS/dsRNA-Seq

PARS/dsRNA-Seq

产品 学习 公司 支持 Recommended Links

产品

仪器

试剂盒和试剂

选择工具

软件和分析

服务

热门产品

浏览所有产品

仪器

测序平台

芯片扫描仪

所有仪器

NovaSeq X梦无垠,创无限。

了解更多

试剂盒和试剂

文库制备试剂盒

测序试剂

芯片试剂盒

临床研究产品

所有试剂盒和试剂

全新NextSeq 1000/2000 P1和P2试剂盒(600个循环)

全新配置支持实现更长读长,数据产出更高,适用于免疫组库分析、鸟枪法宏基因组学等方法

了解更多

选择工具

文库制备和芯片试剂盒选择器

基因panel和芯片查找工具

测序仪比较工具

DesignStudio定制实验分析设计器

更多工具

文库制备试剂盒选择器: Infinium OmniExpressExome-8 Kit

高性能、快速、集成的工作流程,适用于人类全基因组测序等灵敏应用

寻找合适的试剂盒

软件和分析

BaseSpace 序列中心

BaseSpace 应用程序

DRAGEN Bio-IT 平台

TruSight 软件套组

BaseSpace 变异解释器

MyIllumina 客户面板

所有软件和生物信息学产品

DRAGEN v4.2

新功能包括提高SNV和SV检出准确性、改进小CNV检出准确性以及新的靶向检出程序

了解更多

服务

产品支持服务

Illumina Proactive仪器性能服务

我们的仪器性能服务有助于缩短意外停机时间,并尽可能减少仪器重新验收

了解更多

热门产品

AmpliSeq for Illumina

Illumina DNA Prep

Illumina RNA Prep with Enrichment

NextSeq 2000测序系统

TruSight Oncology 500产品家族

所有热门产品

Illumina DNA Prep with Exome 2.0 Plus Enrichment

全外显子组测序试剂盒,包括文库制备和杂交试剂、外显子组探针panel、片段选择磁珠和标签

立即订购

学习

感兴趣的领域

工艺

技术

培训

文献

数据分析和信息学

查看所有学习选项

感兴趣的领域

研究

癌症研究

微生物学

农业基因组学

复杂疾病基因组学

细胞和分子生物学

临床

生殖健康

肿瘤学

遗传 & 罕见疾病

所有领域

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

工艺

测序

DNA测序

RNA测序

甲基化测序

文库制备

芯片

热门基因组学应用

基因分型

基因表达分析

表观遗传学

基因组编辑

所有技术

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

技术

NGS新手指南

我们的技术

新一代测序

长读长测序

芯片技术

测序方法探索工具

所有技术

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

培训

Illumina的资源和工具

面向新手的新一代测序

基因组学教育

Illumina培训中心

Illumina学院

播客

医学遗传学

所有培训

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

文献

同行评审文献汇总

客户案例

iCommunity访谈

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

数据分析和信息学

基础架构和流程设置

测序数据分析

生物学数据解读

所有信息学教育

通过灵长类动物了解人类自身的基因组

一种基于自然选择训练的新算法能够找出人类的致病变异

了解更多

公司

关于我们

新闻中心

职业生涯

投资方信息

与我们合作

法务

查看所有公司信息

关于我们

办公地点

管理团队

董事会

伦理咨询委员会

公司简介

企业社会责任

iHope慈善测序

管理 & 行为准则

关于我们的更多信息

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

新闻和活动

新闻中心

专题文章

博客

新闻稿

新闻中的Illumina

Illumina图片

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

职业生涯

概述

搜索职位

职业发展

员工故事

Illumina全球办公室分布及相关福利

更多职业信息

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

投资方信息

概述

股东活动

财务信息

股票信息

企业管理

所有投资方信息

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

与我们合作

MyIllumina客户界面

仪器购买选项

Instrument Buying Options

Illumina加速器(Illumina Accelerator)创业公司资助

分销商

供应商

合作伙伴

所有联系信息

更多商业解决方案

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

法务

销售条款和条件

报告合规问题

隐私政策

管理&行为准则

所有法律信息

因美纳创新蓝图

查看在因美纳基因组学论坛上发布的我们最新技术和产品的实时回放

立即观看

支持

试剂盒与仪器

文档和培训

工具

服务

更多资源

联系我们

友情链接

查看所有支持

产品支持

仪器支持+下拉列表

文库制备试剂盒支持

芯片支持

软件支持

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

文档和培训

文档

安全数据表

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

工具

测序覆盖度计算器

自定义实验方案选择器

文库制备和芯片试剂盒选择器

所有支持工具

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

服务

产品支持服务

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

更多资源

技术公告

Illumina接头序列

共享桌面

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

联系我们

分销商

供应商

所有联系信息

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

友情链接

因美纳在线讲堂

在线社区

Illumina DRAGEN二级分析v4.2

获取DRAGEN二级分析v4.2的使用说明

了解更多

推荐链接

特色产品和服务

选择和规划工具

软件和分析

访谈和新闻

方法和教育

方法和教育

特色产品

软件和分析

访谈和新闻

方法和教育

特色产品

选择和规划工具

软件和分析

访谈和新闻

方法和教育

软件和分析

访谈和新闻

特色产品

方法和教育

特色产品

选择和规划工具

软件和分析

访谈和新闻

方法和教育

特色产品

选择和规划工具

软件和分析

访谈和新闻

方法和教育

特色产品

选择和规划工具

访谈和新闻

方法和教育

特色产品

选择和规划工具

访谈和新闻

更改已选感兴趣的领域

特色产品和服务

AmpliSeq for Illumina Cancer Hotspot Panel v2AmpliSeq for Illumina Comprehensive Cancer PanelTruSight Oncology 500iSeq 100系统NextSeq 550系统仪器服务和咨询所有癌症基因组学产品

深入探索癌症,助力精准测试

能够实现血液和组织的肿瘤全景变异分析方案

查看产品系列

选择和规划工具

文库制备和芯片试剂盒选择器基因panel和芯片查找工具测序仪比较工具测序覆盖度计算器自定义实验方案选择器更多工具

深入探索癌症,助力精准测试

能够实现血液和组织的肿瘤全景变异分析方案

查看产品系列

软件和分析

BaseSpace Sequence Hub应用程序BaseSpace Variant InterpreterBaseSpace Correlation EngineDesignStudio定制实验分析设计器所有信息学产品

深入探索癌症,助力精准测试

能够实现血液和组织的肿瘤全景变异分析方案

查看产品系列

访谈和新闻

客户访谈脑肿瘤研究新一代测序panel更多访谈特色新闻TruSight Oncology 500可支持液体活检研究更多新闻

深入探索癌症,助力精准测试

能够实现血液和组织的肿瘤全景变异分析方案

查看产品系列

方法和教育

癌症基因组学研究

癌症测序方法

免疫肿瘤学研究

癌症表观遗传学

所有的癌症基因组学研究

临床癌症研究

体细胞突变

生殖系突变

肿瘤突变负荷

所有的临床癌症研究

培训

深入探索癌症,助力精准测试

能够实现血液和组织的肿瘤全景变异分析方案

查看产品系列

方法和教育

微生物测序方法16s和ITS rRNA测序宏基因组学测序微生物全基因组测序微生物转录组学人类微生物组分析传染性疾病监测培训(Illumina大学)所有微生物基因组学研究

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

特色产品

Nextera DNA FlexiSeq 100系统仪器服务和咨询所有微生物基因组学产品

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

软件和分析

BaseSpace Sequence Hub应用程序BaseSpace Correlation Engine所有信息学产品

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

访谈和新闻

客户访谈

微生物组研究有助于完善药物发现

探究神秘的微生物世界

特色新闻

冠状病毒的特征

IDbyDNA合作开发NGS传染病解决方案

绘制斯德哥尔摩的地铁微生物组图

更多新闻

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

方法和教育

农业基因组学

动植物基因分型

动植物测序

商业化农业应用

农业基因组学联盟

培训(Illumina大学)

Solutions for applied animal and plant genomics

Learn about genotyping tools for genetic improvement of crops and livestock

Watch Webinar

特色产品

Illumina DNA Prep

Infinium iSelect Custom Genotyping BeadChips

NovaSeq 6000系统

所有农业基因组学产品

Solutions for applied animal and plant genomics

Learn about genotyping tools for genetic improvement of crops and livestock

Watch Webinar

选择和规划工具

文库制备和芯片试剂盒选择器测序仪比较工具基因panel和芯片查找工具DesignStudio定制实验分析设计器更多工具

Solutions for applied animal and plant genomics

Learn about genotyping tools for genetic improvement of crops and livestock

Watch Webinar

软件和分析

BaseSpace Sequence Hub应用程序GenomeStudio软件所有信息学产品

Solutions for applied animal and plant genomics

Learn about genotyping tools for genetic improvement of crops and livestock

Watch Webinar

访谈和新闻

客户访谈

基因组学如何改变了牛群管理

Large-Scale Bull Genome Sequencing

特色新闻

2020 Agricultural Greater Good Grant Winner

2019 Agricultural Greater Good Grant Winner

地球生物基因组计划

更多新闻

Solutions for applied animal and plant genomics

Learn about genotyping tools for genetic improvement of crops and livestock

Watch Webinar

方法和教育

复杂疾病基因组学

疾病关联研究

基因靶点识别和通路分析

多基因风险评分

方法

Illumina培训

分秒必争。无PCR的新制备方法可加快全基因组测序

使用新的文库制备试剂盒助力罕见遗传病的研究

阅读文章

软件和分析

BaseSpace Sequence Hub应用程序BaseSpace Variant InterpreterBaseSpace Correlation Engine芯片软件所有信息学产品

分秒必争。无PCR的新制备方法可加快全基因组测序

使用新的文库制备试剂盒助力罕见遗传病的研究

阅读文章

访谈和新闻

客户访谈认知控制的遗传因素更多访谈特色新闻回顾过去更多新闻

分秒必争。无PCR的新制备方法可加快全基因组测序

使用新的文库制备试剂盒助力罕见遗传病的研究

阅读文章

特色产品

Infinium MethylationEPIC Kit

TruSeq Methyl Capture EPIC Library Prep Kit

SureCell Whole Transcriptome Analysis 3' Library Prep Kit

Infinium Global Screening Array

Infinium PsychArray BeadChip

NextSeq 2000系统

所有复杂疾病研究产品

分秒必争。无PCR的新制备方法可加快全基因组测序

使用新的文库制备试剂盒助力罕见遗传病的研究

阅读文章

方法和教育

细胞和分子生物学研究癌症测序方法免疫肿瘤学研究表观遗传学染色体异常安全数据表常见问题临床癌症研究体细胞突变生殖系突变培训(Illumina大学)

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

特色产品

TBD

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

选择和规划工具

TBD

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

软件和分析

TBD

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

访谈和新闻

TBD

Illumina COVIDSeq Test

This high-throughput NGS test detects SARS-CoV-2 in nasopharyngeal, oropharyngeal, and mid-turbinate nasal swabs

View Product

方法和教育

肿瘤学

NGS在肿瘤领域的价值

癌症伴随诊断

分子诊断

医学遗传学教育

带来更深刻的见解、答案和突破

看看通过高通量测序技术的最新进展可以实现什么

了解更多

特色产品

Praxis Extended Ras PanelTruSeq Custom Amplicon Kit Dx体外诊断(IVD)产品体外诊断仪器MiSeqDx仪器NextSeq 550Dx仪器仪器服务和咨询

带来更深刻的见解、答案和突破

看看通过高通量测序技术的最新进展可以实现什么

了解更多

选择和规划工具

文库制备和芯片试剂盒选择器测序仪比较工具更多工具

带来更深刻的见解、答案和突破

看看通过高通量测序技术的最新进展可以实现什么

了解更多

软件和分析

文库制备和芯片试剂盒选择器测序仪比较工具更多工具

带来更深刻的见解、答案和突破

看看通过高通量测序技术的最新进展可以实现什么

了解更多

访谈和新闻

客户访谈在分子诊断实验室应用新一代测序更多访谈特色新闻Illumina TruSight检测获突破性器械认定更多新闻

带来更深刻的见解、答案和突破

看看通过高通量测序技术的最新进展可以实现什么

了解更多

方法和教育

非侵入性产前检查使用非侵入性产前检测的实验室筛查非侵入性产前检测实验室送检非侵入性产前检测实验室教育医学遗传学教育所有生殖健康内容

Hear about VeriSeq NIPT from Our Customers

Find out why laboratories In Europe have implemented VeriSeq NIPT

View Video

特色产品

VeriSeq NIPT SolutionInfinium CytoSNP-850K BeadChipNextSeq 550Dx仪器仪器服务和咨询所有生殖健康产品

Hear about VeriSeq NIPT from Our Customers

Find out why laboratories In Europe have implemented VeriSeq NIPT

View Video

选择和规划工具

文库制备和芯片试剂盒选择器测序仪比较工具更多工具

Hear about VeriSeq NIPT from Our Customers

Find out why laboratories In Europe have implemented VeriSeq NIPT

View Video

访谈和新闻

客户访谈SNP芯片鉴定致体外受精失败的遗传性疾病更多访谈特色新闻教育是非侵入性产前检查的关键更多新闻

Hear about VeriSeq NIPT from Our Customers

Find out why laboratories In Europe have implemented VeriSeq NIPT

View Video

方法和教育

遗传 & 罕见疾病

罕见疾病基因组学

心血管疾病基因组学

分子诊断

囊性纤维化测试

体外诊断方法开发

针对儿童罕见病的iHope

医学遗传学教育

时间就是生命—全新PCR-Free Prep建库试剂加速全基因组测序

全新的全基因组建库试剂助力罕见遗传疾病研究

阅读文章

特色产品

TruSeq Custom Amplicon Kit DxMiSeq Cystic Fibrosis Clinical Sequencing Assay体外诊断(IVD)产品体外诊断仪器MiSeqDx仪器NextSeq 550Dx仪器仪器服务和咨询Clinical Sequencing Services所有遗传健康产品

时间就是生命—全新PCR-Free Prep建库试剂加速全基因组测序

全新的全基因组建库试剂助力罕见遗传疾病研究

阅读文章

选择和规划工具

文库制备和芯片试剂盒选择器测序仪比较工具更多工具

时间就是生命—全新PCR-Free Prep建库试剂加速全基因组测序

全新的全基因组建库试剂助力罕见遗传疾病研究

阅读文章

访谈和新闻

客户访谈未确诊疾病婴儿患者的罕见病变异更多访谈特色新闻造福罕见病和未确诊遗传病患者的研究进展更多新闻

时间就是生命—全新PCR-Free Prep建库试剂加速全基因组测序

全新的全基因组建库试剂助力罕见遗传疾病研究

阅读文章

科学与教育

概述

技术

概述

新一代测序

数字微流体

芯片技术

Technology Development

测序方法探索工具

概述

转录组分析的方法

Methods for genomic analysis

Methods for epigenomic analysis

文献综述

客户案例

概述

iCommunity客户访谈和案例研究

研究人员教育

概述

Illumina的资源和工具

遗传分析

FFPE样本分析

测序工作流程的准确性

基因组学101

基因组学播客

基因组学联盟

概述

人类联盟

基因组学研究中心

概述

文章

出版物

More

科学与教育

/所有测序方法

/PARS/dsRNA-Seq

PARS/dsRNA-Seq

PARS/dsRNA-Seq

Parallel analysis of RNA structure (PARS-Seq)  mapping gives information about the secondary and tertiary structure of RNA. In this method RNA is digested with RNases that are specific for double-stranded and single-stranded RNA, respectively. The resulting fragments are reverse-transcribed to cDNA. Deep sequencing of the cDNA provides high-resolution sequences of the RNA. The RNA structure can be deduced by comparing the digestion patterns of the various RNases.

Pros:

Provides RNA structural information

Distinguishes between paired and unpaired bases

Alternative to mass spectrometry, NMR, and crystallography

Cons:

Enzyme digestion can be nonspecific

Digestion conditions must be carefully controlled

RNA can be over-digested

PARS-Seq/dsRNA-Seq: Wan Y., Qu K., Ouyang Z. and Chang H. Y. (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 8: 849-869

TruSeq Small RNA Library Preparation Kits

TruSeq Stranded total RNA library prep kit

TruSeq Nano DNA Library Prep Kit

TruSeq DNA PCR-Free Library Prep Kit

Sugimoto Y., Vigilante A., Darbo E., Zirra A., Militti C., et al. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519: 491-494.

Wan Y, Qu K, Ouyang Z, Chang HY; (2013) Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat Protoc 8: 849-69

仅供研究使用。不得用于诊断。(除特殊标注外)

Not for import or sale to the Australian general public.

创新技术

在Illumina,我们的目标是应用创新技术来分析遗传变异和功能,实现几年前甚至还无法想象的研究。我们的任务是提供创新、灵活、可扩展的解决方案以满足客户的需求。作为一家重视合作互动、快速交付解决方案和提供高质量水平的全球性公司,我们努力应对这一挑战。Illumina创新的测序和芯片技术正在推动生命科学研究、转化和消费者基因组学以及分子诊断中的进展。

Illumina Korea

Hi Investment & Securities building

66 Yeoidaero Yeoungdeungpo-gu

Seoul Korea 07325

02-740-5300 (tel)

02-786-8368 (fax)

customercare@illumina.com

판매 약관 |

Tax Reg: 105-87-87282 |

Retailer Reg: 2019-서울영등포-2018 |

Host: https://www.illumina.com |

Address of host server location: 5200 Illumina Way, San Diego, CA 92122 U.S.A.

所有商标均为 Illumina 公司或其各自所有者的财产。

具体商标信息,请参见 www.illumina.com.cn/company/legal.html.

职业发展

联系我们

  

沪ICP备2021026389号

沪公安网安备31011202014426号

© 2024 Illumina, Inc. All rights reserved.

科学网—RNA结构组学分析技术 - 孙学军的博文

科学网—RNA结构组学分析技术 - 孙学军的博文

注册

|登录

构建全球华人科学博客圈

返回首页

微博

RSS订阅

帮助

氢分子医学分享

http://blog.sciencenet.cn/u/孙学军 对氢气生物学效应感兴趣者。可合作研究:sunxjk@hotmail.com 微信 hydrogen_thinker

博客首页

动态

博文

视频

相册

好友

留言板

首页 新闻 博客 人才 会议 基金 论文 视频 小柯机器人 相册Album 帮助Help

粉丝

评论

@我

提醒

我的博客

博文

RNA结构组学分析技术

精选

已有 11637 次阅读

2015-7-24 08:30

|个人分类:自然科学|系统分类:海外观察

转发请注明:请关注本人氢气医学公众号 氢思语 (hydrogen_thinker)基因组、蛋白组和代谢组学研究已经成为常规生物学研究方法,但是对RNA分子进行组学研究依然属于少数实验室的专门技术,主要问题是分析技术的局限。2015年7月23日《自然》有文章专门对这个问题进行了介绍。国际上最早开展这样研究的实验室是用植物开始的,宾夕法尼亚州立大学化学家Philip Bevilacqua2014年在《自然》发表了第一篇RNA组学研究论文,开创了RNA组学研究技术。RNA是细胞功能重要调节分子,这些分子结构必然能提供关于功能的重要信息,但生化学家一般都检测和分析RNA单分子,Bevilacqua认为,理解RNA应该对细胞内所有RNA分子进行整体研究,Bevilacqua首先考虑用植物细胞开展研究,虽然他没有任何研究植物生理学的经历,这显得有他过于胆大妄为,但是科学家就应该有一种敢于应对挑战的精神。为了学习植物细胞知识,Bevilacqua首先恶补了植物解剖学的本科课程。为了解决RNA分析的技术瓶颈,Bevilacqua与植物分子生物学家Sarah Assmann合作,开发出一种能进行大规模RNA分析的技术。2013年11月,Bevilacqua小组率先在国际上描述了活细胞内数千种RNA形态研究技术,并对植物模式生物拟南芥细胞内RNA形态进行了研究。2013年12月,加州大学旧金山分校采用类似技术报道了酵母和人类细胞的研究结果。北卡罗莱纳大学教堂山分校生物学家Alain Laederach说,这些研究在大规模RNA结构分析方面取得了突破性进。RNA一直是科学家关注的分子,早期认为RNA只是在DNA和蛋白之间传递遗传信息的分子,生物学家现在知道,人类基因组85%能转录成RNA,但大部分RNA并不会翻译成蛋白质,而是拥有多种多样功能的调节分子,RNA不仅传递蛋白质合成的遗传信息,也是控制基因活性和调节其他RNA功能的重要因素。不过,科学家对RNA复杂多样的结构并不十分了解。DNA是能预测的双螺旋结构,RNA与DNA不同,是单链折叠成的隆起、假结、头样、发夹等多种多样的复杂三维循环结构。满足不同功能状态的需要,不同折叠能相互转化。科学家对RNA的这些信息了解非常肤浅。生物物理学家Jonathan Weissman说,这正是关于RNA功能研究中最薄弱的环节。最近几年,科学家开始对RNA结构研究发起挑战。Bevilacqua, Weissman等设计的技术能对细胞内大量RNA结构进行整体解析,初步研究结果发现,活细胞内RNA折叠方式与人工条件下的完全不同。他们提出了一些RNA折叠规则,这些规则可能对理解细胞功能和疾病有帮助。Laederach说,RNA折叠规则是生物进化中的基本问题,能有助于理解各种RNA表现和功能机制,这是让生物学家最希望了解的内容。北卡大学化学生物学家Kevin Weeks是RNA结构研究专家,他认为进化过程中,RNA是保守的分子,序列和结构进化过程中发生很少变化。不过他指的保守结构和序列的分子是转运RNA、核糖体RNA和核酸酶。Weeks说,稳定序列的RNA不过是海量RNA世界中的个别现象。加州大学欧文分校化学家Robert Spitale说,我们对大部分RNA的结构几乎一无所知,RNA分子通常有一个线性核苷酸链,但在细胞核内合成后,会通过自身核苷酸配对迅速折叠,然后进一步折叠成复杂三维结构,与蛋白和其他RNA分子发生相互作用时会改变形状。研究RNA结构的大部分技术利用核苷酸相互结合的特点,或者序列对某些酶的敏感性。计算机模拟技术也有助于整体结构的分析。但是这些方法非常繁琐,一次只能分析一个分子的一部分。五年前,加州大学基因组学家Howard Chang,联合以色列魏茨曼科学研究所计算生物学家Eran Segal开发了一种RNA结构的PARS技术。PARS技术利用RNA酶将RNA单链部分与双链部分切割。对目标RNA样本进行酶切,制造出两种RNA片段库,然后对两个RNA片段库分别进行序列分析,最后对这些片段进行对接分析,该技术的好处是可批量分析成千上万RNA。原理类似于利用质谱分析小分子原子组成的技术。利用PARS技术,Chang和Segal对酿酒酵母3000多mRNA进行分析,并发现基因组中存在除非翻译区序列外更多复杂的奇怪结构成分。这些结构有重要生理意义,因为非翻译区通常需要与调节性蛋白相互作用。2014年,Yue Wan利用PARS技术对来自一家三口的血液细胞的20,000多个mRNA进行分析,发现大约1900个非编码单链变异区。2015年5月,Laederach小组报道,一种mRNA非翻译区变异和一种罕见眼部癌症视网膜母细胞瘤有关。健康人的该mRNA有三种结构,但视网膜母细胞瘤只有两种。mRNA核苷酸结构变异能让该分子形成单链结构。Laederach认为,这种mRNA核苷酸结构变异可能与某些疾病和身高差异有密切关系。PARS的主要缺陷是某些核酸内切酶不容易穿过细胞膜,因此只能将RNA从细胞内抽提出来,这将破坏细胞的天然结构。理论上RNA在细胞内和细胞外应该有大致相同的形状,但事实上这种操作会破坏结合RNA的蛋白,导致RNA在细胞内外结构上的差异。为研究活体RNA结构,许多科学家采用硫酸二甲酯方法,硫酸二甲酯能够结合未折叠的RNA链,不能结合折叠的RNA链。硫酸二甲酯也能进入细胞内,在细胞内与未折叠的RNA链中四种碱基中的腺嘌呤和胞嘧啶反应。然后将RNA逆转录成DNA并进行序列分析。那些结合硫酸二甲酯的核苷酸不能被逆转录,通过分析缩短的DNA序列确定未折叠RNA链。Weissman等将该方法应用于酵母和人类细胞全部mRNA分析,比较了活细胞和细胞破碎提取后再折叠RNA。参与该项目的Silvi Rouskin说,研究可对比活体和离体mRNA的差异,这非常有意思。许多科学家主观估计,细胞内RNA折叠更明显,因为细胞内有许多蛋白质能稳定RNA结构。Weissman的研究结果正好相反。他们分析可能是因为细胞内mRNA翻译成蛋白质时需要保持比较松散的结构。使用硫酸二甲酯技术,Bevilacqua和Assmann分析拟南芥细胞mRNA后获得了奇怪的结果。一些在干旱情况下被激活的应激反应基因的mRNA在细胞内折叠程度远低于理论模拟。相反,维持细胞稳定的管家基因折叠程度与计算机模拟更接近。Bevilacqua等认为,应激反应mRNA折叠少是为提高相关基因翻译效率,应对外界环境改变,而管家基因mRNA必须保持稳定的表达。硫酸二甲酯技术的只能确定一类核苷酸对,其余部分只能依靠计算机模拟填充。为获得细胞内RNA每一序列,Chang和Spitale使用改进的结构探针技术SHAPE6,对老鼠胚胎干细胞内19000个RNA结构进行整体分析(2015)。发现了的一种能促进mRNA分子伸展的常见化学修饰,对这些修饰部位分析可预测蛋白质结合和控制RNA形状的独特序列。一些研究人员已经考虑将这些技术用于更多细胞。Assmann 和 Bevilacqua正在用这些技术对大米细胞RNA进行分析,并计划对其他农作物开展类似研究。他们希望通过这种研究,寻找到能操作RNA形状的方法,以作为提高作物的抗逆能力和产品产量。Rouskin正在研究果蝇RNA结构对胚胎发育的影响。http://www.nature.com/news/a-cellular-puzzle-the-weird-and-wonderful-architecture-of-rna-1.18014

转载本文请联系原作者获取授权,同时请注明本文来自孙学军科学网博客。链接地址:https://blog.sciencenet.cn/blog-41174-907774.html

上一篇:《自然》白内障无药可用的历史或终结下一篇:学者提出人类语言诞生与货币交易有关

收藏

IP: 58.247.243.*|

热度|

当前推荐数:18

推荐人:

刘士勇 李土荣 孔凡明 庞晓明 毛培宏 李久煊 乔中东 束永俊 王志华 苏光松 马兆武 陈筝 杨金波 azjxa xuexiyanjiu zhoutong biofans YP953020362

推荐到博客首页

该博文允许注册用户评论 请点击登录

评论 (5 个评论)

数据加载中...

返回顶部

孙学军

加为好友

给我留言

打个招呼

发送消息

扫一扫,分享此博文

全部作者的精选博文

• 器官采集改善心理健康

• 婴儿健忘症研究揭示大脑记忆的功能

• 为什么癌症发生越来越年轻?数据透露的秘密

• AI对科学和社会的影响

• 一群顽固批评者揭露了迪迪埃·拉乌尔的严重学术不端

• 细胞应激管理失调可导致死亡

全部作者的其他最新博文

• 甲状腺素β受体激动剂治疗脂肪肝获FDA批准

• 植物有感觉吗?

• 器官采集改善心理健康

• 加工食品破坏肠道微生物多样性

• 氢气吸入对脑外伤后脑损伤的治疗作用

• 婴儿健忘症研究揭示大脑记忆的功能

全部精选博文导读

• 考研复试,导师心仪这样的学生!

• 科学网2024年2月十佳博文榜单公布!

• 植物园领导者之路 | 邱园皇家植物园变革宣言

• 科学家解开了一个世纪的细胞分裂之谜

• 给研究生们的几点建议

• 香港理工大学柴扬等:用于视觉-嗅觉跨模态感知的MXene/紫磷范德华异质结光电突触

相关博文

• 老派学者文人最喜欢的体裁——笔记

• 北航学者发现的特高压输电工程存在特殊的谐波辐射现象可以用于威力强大的空间通讯

• 鹏城实验室诚邀海外英才申报2024年高端学者项目

• 经历回顾:接受访问学者,促进中美文化和学术交流

• 祝贺!2023全球学者学术影响力排名公布,ICM编委56人上榜

• 给年轻学者的稿子提意见(2012)

Archiver|手机版|科学网

( 京ICP备07017567号-12 )

GMT+8, 2024-3-17 02:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

修改头像

个人资料

认证

积分

用户组

隐私筛选

密码安全

我收到的评论/回复

我发表的评论/回复

查看@我

查看其他

积分 0, 距离下一级还需 积分

返回顶部

PARS:预测儿童哮喘的更好工具 -

PARS:预测儿童哮喘的更好工具 -

Facebook

Instagram

LinkedIn

RSS

Twitter

WhatsApp

Youtube

科学

农业与食品

考古学

天文学与空间科学

行为科学

生物学

CHEMISTRY

地球科学

数学

个性

物理

科学政策

Covid-19

医疗

财富

环境

英格。 &技术。

搜索

9

C

伦敦

星期六, 三月 16日,2024

关于我们

关于《科学欧洲》和出版商

目标和范围

管理委员会

隐私政策

我们的政策

著者

作者常见问题

作者说明

登录-注册

道德和渎职

我的账户

下载

联系我们

Facebook

Instagram

LinkedIn

RSS

Twitter

WhatsApp

Youtube

登录

欢迎! 登录到您的帐户

您的用户名

您的密码

忘记密码了吗? 得到帮助

隐私政策

密码恢复

恢复密码

您的电子邮件

密码将通过电子邮件发送给你。

科学欧洲

科学

所有类型农业与食品考古学天文学与空间科学行为科学生物学CHEMISTRY地球科学数学个性物理科学政策

天文学与空间科学

恒星形成区 NGC 604 的最新最详细图像 

天文学与空间科学

欧罗巴海洋的生命前景:朱诺号任务发现低氧……

生物学

Pleurobranchaea britannica:英国发现的一种新海蛞蝓物种……

科学政策

阿尔弗雷德·诺贝尔 (Alfred Nobel) 对伦纳德·布拉瓦尼克 (Leonard Blavatnik):慈善家如何设立奖项……

Covid-19

Covid-19

JN.1 子变体:额外的公共卫生风险较低……

Covid-19

COVID-19:JN.1亚变种具有更高的传播性和免疫逃逸能力 

Covid-19

COVID-19疫苗荣获诺贝尔医学奖  

Covid-19

COVID-19 尚未结束:我们对最新激增的了解……

Covid-19

Spikevax 双价原装/Omicron 加强疫苗:第一个双价 COVID-19 疫苗接受 MHRA ……

医疗

中医药

Rezdiffra(resmetirom): FDA 批准首个治疗因……引起的肝脏疤痕的药物

中医药

新的 ICD-11 精神障碍诊断手册  

中医药

欧洲鹦鹉热病:鹦鹉热衣原体病例异常增加 

中医药

伊洛前列素获得 FDA 批准用于治疗严重冻伤

中医药

抗菌素耐药性 (AMR):一种新型抗生素 Zosurabalpin (RG6006) 在……中显示出前景

财富

财富

50% 的 2 型糖尿病患者年龄在 16 至 44 岁之间……

财富

发现 275 亿个新基因变异 

财富

打击非法烟草贸易的 MOP3 会议在巴拿马闭幕……

财富

生成人工智能(AI):世卫组织发布关于……治理的新指南

财富

朊病毒:慢性消耗性疾病 (CWD) 或僵尸鹿病的风险 

环境

环境

水下机器人可获取北海更准确的海洋数据 

环境

福岛核事故:处理水中的氚含量低于日本……

环境

迈向基于土壤的气候变化解决方案 

环境

每升瓶装水含有约 250 万个塑料颗粒,其中 90% 是……

环境

COP28:“阿联酋共识”呼吁通过……过渡摆脱化石燃料

英格。 &技术。

工程技术

WAIFinder:一种新的数字工具,可最大限度地提高整个英国的连接性……

工程技术

3D生物打印首次组装功能性人脑组织  

工程技术

世界上第一个网站  

工程技术

电动汽车 (EV) 锂电池:带有二氧化硅涂层的隔膜……

工程技术

“核电池”成熟了吗?

广告投放

评论中医药

PARS:预测儿童哮喘的更好工具

FacebookTwitterWhatsAppLinkedIn书签交易邮箱地址打印复制网址

By 赛欧团队

15 2019三月

已经创建并测试了基于计算机的工具来预测幼儿的哮喘

哮喘 影响全球 300 亿多人,是最常见的慢性病之一 疾病 给成本带来了沉重的负担。 哮喘是一种复杂的疾病,其中气道发生炎症,然后阻止足够的氧气转移到肺部,导致持续咳嗽、呼吸急促和胸闷等症状。 通过疗法进行哮喘护理已经很成熟,但良好的哮喘初级护理由于缺乏人员、知识、培训、资源等而受到限制。哮喘护理的全球成本估计每年高达数十亿英镑。

小儿哮喘风险评分 (PARS):一种预测幼儿哮喘的工具

在发表的一项研究 过敏与临床免疫学杂志, 科学家设计并评估了一种称为小儿哮喘风险评分的决策工具(PARS) 可以准确预测幼儿哮喘1. 与既定工具不同,它由诸如人口统计数据和患者临床因素之类的标准组成。 与黄金标准哮喘预测评分 (API) 相比,被 PARS 评分标记为轻度至中度哮喘风险的儿童多出 43%。 这两种工具对具有高风险因素的儿童的预测相似。 根据需要识别轻度或中度风险的儿童很重要,并且可以更好地对哮喘预防策略做出反应。

PARS 工具是通过利用来自辛辛那提儿童过敏和空气污染队列研究预测哮喘发展的数据/因素设计的。 这项研究由大约 800 名婴儿组成,其中至少有一位父母有至少一种过敏症状。 这些儿童每年在 1、2、3、4 和 7 岁时接受皮肤测试,以确定是否发生过敏性疾病。 研究人员检查了 15 种空气过敏原(空气传播)和食物过敏原,包括猫、霉菌、牛奶、鸡蛋和蟑螂。 共有 589 名儿童在 7 岁时接受了哮喘发展测试,并通过肺功能的标准测量(如肺活量测试)进行诊断。 这些儿童中有 16% 患有哮喘,他们的父母被要求了解可能导致哮喘的各种风险因素。 使用 PARS 预测哮喘的变量是喘息、对 2 种或更多食物和/或空气传播的过敏原和非裔美国人的过敏原。 这些孩子的父母中至少有一位患有哮喘病,并且在很小的时候还患有其他疾病,如湿疹和过敏性鼻炎。

PARS 的新模型比黄金标准 API 的敏感度高 11%。 与用于预测哮喘发展的大约 30 个已建立的模型相比,PARS 也更好且侵入性小得多。 PARS 更容易实施,这项研究包括一个 PARS 表,其中包含决策工具和临床解释。 PARS 还有一个 Web 应用程序2,应用程序开发目前正在进行中。

与自 2000 年以来开发和使用的黄金标准哮喘预测评分 (API) 相比,PARS 评分将 43% 的儿童标记为轻度至中度哮喘风险,因为 API 仅提供“是”或“否”为风险。 这两种工具对具有高风险因素的儿童的预测相似。 识别轻度或中度风险的儿童至关重要,因为他们立即需要,并且可以在很小的时候通过早期干预对哮喘预防策略做出更好的反应。 这有助于在并发症开始前缓解哮喘。

与黄金标准 API 相比,PARS 的新模型在预测生命早期的哮喘方面的敏感性和准确性高 11%。 在英国进行的另一项不包括非裔美国人的研究证实了这一结果。 PARS 是一种更强大、更有效和更通用的工具,而且与 30 个已建立的模型相比,它是一种侵入性更小的方法。 预测 1-2 岁儿童的轻度至中度哮喘可以对控制这种疾病产生重大影响。 PARS 易于实施,本研究包括一张 PARS 表,其中包含决策工具和临床解释。 PARS 也有一个网络应用程序2 和应用程序可用于智能手机。

***

{您可以通过单击下面引用来源列表中给出的 DOI 链接来阅读原始研究论文}

来源(S)

1. Jocelyn M. 2019. 小儿哮喘风险评分可更好地预测幼儿哮喘的发展。 杂志过敏和临床免疫学. https://doi.org/10.1016/j.jaci.2018.09.0372. 小儿哮喘风险评分。 2019. 辛辛那提儿童。 https://pars.research.cchmc.org [10 年 2019 月 XNUMX 日访问]

FacebookTwitterWhatsAppLinkedIn书签交易邮箱地址打印复制网址

赛欧团队https://www.ScientificEuropean.co.uk科学欧洲® | SCIEU.com | 科学的重大进步。 对人类的影响。 鼓舞人心。

订阅电邮通讯将通过所有最新新闻,优惠和特别公告进行更新。订阅

最热门文章

用于治疗 COVID-19 的干扰素-β:皮下给药更有效

12年2021月XNUMX日

E-Tattoo 持续监测血压

28 June 2019

冠状病毒的故事:“新型冠状病毒(SARS-CoV-2)”是如何出现的?

16年2020月XNUMX日

狗:人类最好的伴侣

15年2018月XNUMX日

PHILIP:激光动力漫游车探索超冷月球陨石坑中的水

18 May 2020

Rezdiffra(resmetirom): FDA 批准首个治疗脂肪肝引起的肝脏疤痕的药物 

14 2024三月

恒星形成区 NGC 604 的最新最详细图像 

11 2024三月

新的 ICD-11 精神障碍诊断手册  

10 2024三月

欧罗巴海洋的生命前景:朱诺号任务发现氧气产量低  

9 2024三月

欧洲鹦鹉热病:鹦鹉热衣原体病例异常增加 

6 2024三月

水下机器人可获取北海更准确的海洋数据 

5 2024三月

日常水的两种异构形式表现出不同的反应速率

CHEMISTRY

15 June 2018 0

研究人员首次调查了两个...

南非首次出土最大恐龙化石

生物学

15. 2018 0

科学家挖掘出最大的恐龙化石,...

Thiomargarita magnifica:挑战原核生物理念的最大细菌 

生物学

25 June 2022 0

Thiomargarita magnifica,最大的细菌已经进化到...

- 广告 -

加入我们的Facebook群组

94,775风扇喜欢47,734产品粉丝关注1,772产品粉丝关注30认购订阅

广告投放

编辑推荐

Rezdiffra(resmetirom): FDA 批准首个治疗肝疤痕的药物

中医药 14 2024三月

恒星形成区 NGC 604 的最新最详细图像 

天文学与空间科学 11 2024三月

新的 ICD-11 精神障碍诊断手册  

中医药 10 2024三月

热门职位

用于治疗 COVID-19 的干扰素-β:皮下给药更有效

Covid-19 12年2021月XNUMX日

E-Tattoo 持续监测血压

工程技术 28 June 2019

冠状病毒的故事:“新型冠状病毒(SARS-CoV-2)”是如何出现的?

生物学 16年2020月XNUMX日

热门类别新闻简述226评论167Covid-1993中医药81生物学66工程技术51天文学与空间科学50财富48环境30  

关于我们科学欧洲 SCIEU | 一本旨在向有科学头脑的普通读者传播科学进步的科普杂志| ISSN 2515-9542 在网上, 2515-9534 打印 | 由...出版 英国EPC有限公司 (公司编号 10459935 在英国注册) | 城市:汉普郡奥尔顿。 出版国家:英国。

标题“科学欧洲人”是一个注册商标,有注册号 UK00003238155 和 EU0168845122. 首字母缩略词 'SCIEU' 是一个注册商标,有注册号 EU016969636 和 美国5593103

有关更多详细信息,请访问我们的 关于我们 页面上发布服务提醒。

联系我们: [电子邮件保护]关注我们

Facebook

Instagram

LinkedIn

RSS

Twitter

WhatsApp

Youtube

新闻简述

评论

意见

分析

评价

行业新闻

© 2018-2024 SCIENTIFIC EUROPEAN,UK EPC LTD 的一个部门。 |

PARS中文(繁體)翻譯:劍橋詞典

PARS中文(繁體)翻譯:劍橋詞典

詞典

翻譯

文法

同義詞詞典

+Plus

劍橋詞典+Plus

Shop

劍橋詞典+Plus

我的主頁

+Plus 幫助

退出

劍橋詞典+Plus

我的主頁

+Plus 幫助

退出

登錄

/

註冊

正體中文 (繁體)

查找

查找

英語-中文(繁體)

pars 在英語-中文(繁體)詞典中的翻譯

parsnoun [ C ]

  medical

  specialized uk

Your browser doesn't support HTML5 audio

/pɑːs/ us

Your browser doesn't support HTML5 audio

/pɑːrz/ plural partes

Add to word list

Add to word list

a Latin word meaning "part", used in medical names and descriptions

(拉丁語,用於醫學術語)部分

(pars在劍橋英語-中文(繁體)詞典的翻譯 © Cambridge University Press)

C1

pars的翻譯

中文(簡體)

(拉丁语,用于医学术语)部分…

查看更多內容

需要一個翻譯器嗎?

獲得快速、免費的翻譯!

翻譯器工具

pars的發音是什麼?

在英語詞典中查看 pars 的釋義

瀏覽

parricide

parrot

parrot-fashion

parry

pars

parse

Parsi

parsimonious

parsimoniously

「每日一詞」

token

UK

Your browser doesn't support HTML5 audio

/ˈtəʊ.kən/

US

Your browser doesn't support HTML5 audio

/ˈtoʊ.kən/

something that you do, or a thing that you give someone, that expresses your feelings or intentions, although it might have little practical effect

關於這個

部落格

Renowned and celebrated (Words meaning ‘famous’)

March 13, 2024

查看更多

新詞

inverse vaccine

March 11, 2024

查看更多

已添加至 list

回到頁面頂端

內容

英語-中文(繁體)翻譯

©劍橋大學出版社與評估2024

學習

學習

學習

新詞

幫助

紙本出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

開發

開發

開發

詞典API

連按兩下查看

搜尋Widgets

執照資料

關於

關於

關於

無障礙閱讀

劍橋英語教學

劍橋大學出版社與評估

授權管理

Cookies與隱私保護

語料庫

使用條款

京ICP备14002226号-2

©劍橋大學出版社與評估2024

劍橋詞典+Plus

我的主頁

+Plus 幫助

退出

詞典

定義

清晰解釋自然的書面和口頭英語

英語

學習詞典

基礎英式英語

基礎美式英語

翻譯

點選箭頭改變翻譯方向。

雙語詞典

英語-中文(簡體)

Chinese (Simplified)–English

英語-中文(繁體)

Chinese (Traditional)–English

英語-荷蘭文

荷蘭語-英語

英語-法語

法語-英語

英語-德語

德語-英語

英語-印尼語

印尼語-英語

英語-義大利語

義大利語-英語

英語-日語

日語-英語

英語-挪威語

挪威語-英語

英語-波蘭語

波蘭語-英語

英語-葡萄牙語

葡萄牙語-英語

英語-西班牙語

西班牙語-英語

English–Swedish

Swedish–English

半雙語詞典

英語-阿拉伯語

英語-孟加拉文

英語-加泰羅尼亞語

英語-捷克語

英語-丹麥語

English–Gujarati

英語-印地語

英語-韓語

英語-馬來語

英語-馬拉地語

英語-俄語

English–Tamil

English–Telugu

英語-泰語

英語-土耳其語

英語-烏克蘭文

English–Urdu

英語-越南語

翻譯

文法

同義詞詞典

Pronunciation

劍橋詞典+Plus

Shop

劍橋詞典+Plus

我的主頁

+Plus 幫助

退出

登錄 /

註冊

正體中文 (繁體)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

關注我們!

選擇一本詞典

最近的詞和建議

定義

清晰解釋自然的書面和口頭英語

英語

學習詞典

基礎英式英語

基礎美式英語

文法與同義詞詞典

對自然書面和口頭英語用法的解釋

英語文法

同義詞詞典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻譯

點選箭頭改變翻譯方向。

雙語詞典

英語-中文(簡體)

Chinese (Simplified)–English

英語-中文(繁體)

Chinese (Traditional)–English

英語-荷蘭文

荷蘭語-英語

英語-法語

法語-英語

英語-德語

德語-英語

英語-印尼語

印尼語-英語

英語-義大利語

義大利語-英語

英語-日語

日語-英語

英語-挪威語

挪威語-英語

英語-波蘭語

波蘭語-英語

英語-葡萄牙語

葡萄牙語-英語

英語-西班牙語

西班牙語-英語

English–Swedish

Swedish–English

半雙語詞典

英語-阿拉伯語

英語-孟加拉文

英語-加泰羅尼亞語

英語-捷克語

英語-丹麥語

English–Gujarati

英語-印地語

英語-韓語

英語-馬來語

英語-馬拉地語

英語-俄語

English–Tamil

English–Telugu

英語-泰語

英語-土耳其語

英語-烏克蘭文

English–Urdu

英語-越南語

詞典+Plus

詞彙表

選擇語言

正體中文 (繁體)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

內容

英語-中文(繁體) 

 Noun

Translations

文法

所有翻譯

我的詞彙表

把pars添加到下面的一個詞彙表中,或者創建一個新詞彙表。

更多詞彙表

前往詞彙表

對該例句有想法嗎?

例句中的單詞與輸入詞條不匹配。

該例句含有令人反感的內容。

取消

提交

例句中的單詞與輸入詞條不匹配。

該例句含有令人反感的內容。

取消

提交

pars是什么意思_pars怎么读_pars翻译_用法_发音_词组_同反义词_部_部分-新东方在线英语词典

pars是什么意思_pars怎么读_pars翻译_用法_发音_词组_同反义词_部_部分-新东方在线英语词典

英语词典 -

日语词典

首页 > 英语词典 > 字母单词表 > p开头的单词 > pars

pars

听听怎么读

英 [pɑ:z]

美 [pɑz]

是什么意思

n.部,部分;平均( par的名词复数 );平价;同等(高尔夫球中的)标准杆数;

英英释义

par[ pɑ:z ]n.(golf) the standard number of strokes set for each hole on a golf course, or for the entire course"a par-5 hole"; "par for this course is 72"a state of being essentially equal or equivalent; equally balanced"on a par with the best"同义词:equalityequivalenceequationv.make a score (on a hole) equal to par

学习怎么用

词组短语

on a par同等on a par with与…同等;和…一样at par adv. 平价;依照票面价格;与票面价值相等 up to par达到标准par value面值;票面价值;平价above par在标准以上;超过票面价值under par低于或高于平值;(股票,证券等)在票面价值以上或下on par with与…同等水平par excellence出类拔萃的;最卓越的below par在票面价值以下;在标准以下over par超过票面价值no par value无票面价值;非平价above par value高于面值;高于票面价值;平价以上par value stock有面值的股票 更多收起词组短语

双语例句

As a writer she was on a par with the great novelists.她是与伟大小说家齐名的作家。At this school, only ten people passed the music examination this year. That may seem a small number but it's(about) par for the course.今年这所学校只有10人通过了音乐考试。人数看来太少了,但这却是意料之中的事。

权威例句

Flora Reipublicae Popularis Sinicae, Tomus 20, Pars. 2, Salicaceae by Wang-Zhan; Fang Chen-fuDeep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's diseaseDeep-Brain Stimulation of the Subthalamic Nucleus or the Pars Interna of the Globus Pallidus in Parkinson's Disease — NEJMVisual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gazeVisual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses.Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus.Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccadesA Primate Model of Parkinsonism: Selective Destruction of Dopaminergic Neurons in the Pars Compacta of the Substantia Nigra by N-met...Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata.Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related...

同义词proportion

portion

percent

part

integral p开头的单词Pythagorean theorem

pyruvic acid

pyruvate dehydrogenase

pyruvate kinase

Pyrrhic victory

pyoderma gangrenosum

puzzle out

puzzle over

putty knife

putting the shot

put...to use

put...on record 字母词汇表更多n开头的单词NZ

nyx

nyu

nyt

nystatin

nystagmus

u开头的单词Uzziah

Uzi

Uzbekistan

Uzbek

UZ

uy

w开头的单词wyvern

Wythe

WYSIWYG

WYS

Wyrd

wyomingite 分类词汇表更多影视剧zazzy

your honor

x-certificate

work out

witness

witch

专四专八考试zone

zodiac

zenith

yore

yield

yelp

牛津3000词zone

zero

youth

yourself

yours sincerely

Yours faithfully 人名姓氏表更多男zack

zachary

Zachariah

young

York

Yates

女Zola

Zoe

Zenobia

Zenia

Zena

Zandra

男/女Yong

wynn

winter

willie

Whitney

wally 新东方柯林斯词典 托福考试练习 雅思预测2024年雅思考试重点题汇总[听力|阅读|写作|口语]

2024年2月雅思考试听力|阅读|写作|口语重点题汇总

2024年1月雅思考前必刷题听力|阅读|口语|写作汇总

2024年3月雅思考试听力|阅读|写作|口语重点题汇总

[雅思考前必刷]2024年1月雅思口语考前必刷题Part 2&3地点类

2020年9月雅思口语新题part1:shopping

2021年1月雅思口语新题part2:你认为可以教别人的技能

[雅思考前必刷]2024年1月雅思口语考前必刷题Part 2&3事件类

2020年9月雅思口语新题part1:Activity

2021年1月雅思口语新题part2:你以前看过的现场体育赛事

关于我们

商务合作

广告服务

代理商区域

客服中心

在线留言

合作伙伴

人员招聘

联系我们

网站地图

© 2000-2024 koolearn.com 版权所有    全国客服专线:400-676-2300

京ICP证050421号 京ICP备05067669号-2  京公安备110-1081940  网络视听许可证0110531号

新东方教育科技集团旗下成员公司

pars是什么意思_pars的翻译_音标_读音_用法_例句_爱词霸在线词典

是什么意思_pars的翻译_音标_读音_用法_例句_爱词霸在线词典首页翻译背单词写作校对词霸下载用户反馈专栏平台登录pars是什么意思_pars用英语怎么说_pars的翻译_pars翻译成_pars的中文意思_pars怎么读,pars的读音,pars的用法,pars的例句翻译人工翻译试试人工翻译翻译全文pars英 [pɑ:z]美 [pɑz]释义n.部,部分; 平均( par的名词复数 ); 平价; 同等; (高尔夫球中的)标准杆数大小写变形:PARSPaRSPARs点击 人工翻译,了解更多 人工释义实用场景例句全部In humans, the pars intermedia is a rudimentary region.人的脑垂体中间部是不发达的.辞典例句James Gregory gave in in his " Geometriae Pars Universalis " a method of rectifying curves.JamesGregory在他的《几何的通用部分 》 中给出了计算曲线长度的方法.辞典例句The dangerous type chronic otitis media occurs with pars flaccida and marginal perforations.慢性中耳炎的危险型可出现鼓膜松弛部的穿孔和鼓膜边缘性穿孔.辞典例句To investigate and analyze the epidemiology material of pars plana vitrectomy.目的调查玻璃体切割手术病人流行病学的状况.互联网Methods All patients with dislocated - lens underwent pars plana vitrectomy.方法:采用睫状体扁平部玻璃体切除术切除脱位的晶体.互联网All transmission devices are arranged inside the machine so as to keep pars clean.所有的传动装置均布置在机器内部,保持机件清洁.互联网In addition, there are some general guidelines to help you buy used pars in any situation.此外, 这里有一些指导性建议,对你在任何情况下买二手零件都有帮助.互联网Reject the player whose score is over 120 pars to enter into the course.本俱乐部禁止成绩120杆以上球员下场.互联网Objective To study the clinical value of treading after cataract posterior capsulotomy via pars plana.目的探讨经睫状体平坦部切口行晶状体后囊膜切开术治疗后发性白内障的临床价值.互联网Method 38 eyes with traumatic endophthalmitis were operated with pars plana closed vitrectomy.方法儿童外伤性眼内容炎38例(38眼)行经扁平部闭合式玻璃体切割术.互联网Objective To determine the efficacy and safety of self - sealing pars plana sclerotomies for vitrectomy.目的探讨自 闭式 巩膜隧道切口用于经睫状体平坦部玻璃体切除术的有效性和安全性.互联网Various part of brain substance was: medulla ( pars ventralis ), cortex ( pars dorsalis ), pia mater encephali.脑内组织依次为: 髓质 ( 被盖部 ) 、 皮质 ( 基底部 ) 、 软脑膜.互联网The fe of Sparta ng Menelaus ho as abducted by Pars and proved the Trojan ar.斯巴达王墨涅拉俄斯的王后,因被帕里斯拐去而引发特洛伊战争.互联网There are no previously published case reports of nonambulatory patients with pars interarticularis defects.之前未见有卧床病人发生峡部不连的病例报道.互联网The pars transversa provides lateral wall rigidity and can even be a dilatory muscle.鼻肌横部提供外侧壁硬度,甚至做为扩张肌.互联网收起实用场景例句行业词典医学〔NA〕部,部分:一个大区域、器官或结构的某一特殊部分的通称   法律当事人   释义实用场景例句行

PARS在剑桥英语词典中的解释及翻译

PARS在剑桥英语词典中的解释及翻译

词典

翻译

语法

同义词词典

+Plus

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录

/

注册

中文 (简体)

查找

查找

英语

pars 在英语中的意思

parsnoun [ C ]

  medical

  specialized uk

Your browser doesn't support HTML5 audio

/pɑːs/ us

Your browser doesn't support HTML5 audio

/pɑːrz/ plural partes

Add to word list

Add to word list

a Latin word meaning "part", used in medical names and descriptions

(pars在剑桥高级学习词典和同义词词典中的解释 © Cambridge University Press)

pars的发音是什么?

 

C1

pars的翻译

中文(繁体)

(拉丁語,用於醫學術語)部分…

查看更多内容

中文(简体)

(拉丁语,用于医学术语)部分…

查看更多内容

需要一个翻译器吗?

获得快速、免费的翻译!

翻译器工具

 

浏览

parroted

parroting

parry

parrying

pars

parse

parsec

测试版

parsed

parser

测试版

“每日一词”

token

UK

Your browser doesn't support HTML5 audio

/ˈtəʊ.kən/

US

Your browser doesn't support HTML5 audio

/ˈtoʊ.kən/

something that you do, or a thing that you give someone, that expresses your feelings or intentions, although it might have little practical effect

关于这个

博客

Renowned and celebrated (Words meaning ‘famous’)

March 13, 2024

查看更多

新词

inverse vaccine

March 11, 2024

查看更多

已添加至 list

回到页面顶端

内容

英语翻译

©剑桥大学出版社与评估2024

学习

学习

学习

新词

帮助

纸质书出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

开发

开发

开发

词典API

双击查看

搜索Widgets

执照数据

关于

关于

关于

无障碍阅读

剑桥英语教学

剑桥大学出版社与评估

授权管理

Cookies与隐私保护

语料库

使用条款

京ICP备14002226号-2

©剑桥大学出版社与评估2024

剑桥词典+Plus

我的主页

+Plus 帮助

退出

词典

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

翻译

语法

同义词词典

Pronunciation

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录 /

注册

中文 (简体)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

Nederlands

Svenska

Dansk

Norsk

हिंदी

বাঙ্গালি

मराठी

ગુજરાતી

தமிழ்

తెలుగు

Українська

关注我们

选择一本词典

最近的词和建议

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

语法与同义词词典

对自然书面和口头英语用法的解释

英语语法

同义词词典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

词典+Plus

词汇表

选择语言

中文 (简体)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

Nederlands

Svenska

Dansk

Norsk

हिंदी

বাঙ্গালি

मराठी

ગુજરાતી

தமிழ்

తెలుగు

Українська

内容

英语 

 Noun

Translations

语法

所有翻译

我的词汇表

把pars添加到下面的一个词汇表中,或者创建一个新词汇表。

更多词汇表

前往词汇表

对该例句有想法吗?

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases - PMC

Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases - PMC

Back to Top

Skip to main content

An official website of the United States government

Here's how you know

The .gov means it’s official.

Federal government websites often end in .gov or .mil. Before

sharing sensitive information, make sure you’re on a federal

government site.

The site is secure.

The https:// ensures that you are connecting to the

official website and that any information you provide is encrypted

and transmitted securely.

Log in

Show account info

Close

Account

Logged in as:

username

Dashboard

Publications

Account settings

Log out

Access keys

NCBI Homepage

MyNCBI Homepage

Main Content

Main Navigation

Search PMC Full-Text Archive

Search in PMC

Advanced Search

User Guide

Journal List

Thromb J

v.17; 2019

PMC6440139

Other Formats

PDF (2.1M)

Actions

Cite

Collections

Add to Collections

Create a new collection

Add to an existing collection

Name your collection:

Name must be less than characters

Choose a collection:

Unable to load your collection due to an error

Please try again

Add

Cancel

Share

 

 

 

Permalink

Copy

RESOURCES

Similar articles

Cited by other articles

Links to NCBI Databases

Journal List

Thromb J

v.17; 2019

PMC6440139

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,

the contents by NLM or the National Institutes of Health.

Learn more:

PMC Disclaimer

|

PMC Copyright Notice

Thromb J. 2019; 17: 4. Published online 2019 Mar 29. doi: 10.1186/s12959-019-0194-8PMCID: PMC6440139PMID: 30976204Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseasesDorothea M. Heuberger1,2 and Reto A. Schuepbach1Dorothea M. Heuberger1Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland 2Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland Find articles by Dorothea M. HeubergerReto A. Schuepbach1Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland Find articles by Reto A. SchuepbachAuthor information Article notes Copyright and License information PMC Disclaimer1Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland 2Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland Dorothea M. Heuberger, Email: hc.zsu@regrebueh.akinomaehtorod.Contributor Information.Corresponding author.Received 2018 Nov 20; Accepted 2019 Mar 8.Copyright © The Author(s). 2019Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been corrected. See Thromb J. 2019 November 6; 17: 22.Associated DataData Availability StatementData sharing not applicable to this article as no datasets were generated or analysed during the current study.AbstractInflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs.PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors.In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.IntroductionThe four mammalian members of the protease-activated receptor (PAR) family PAR1, PAR2, PAR3, and PAR4 are encoded by the genes F2R [1], F2RL1 [2], F2RL2 [3], and F2RL3 [4], respectively. Human PAR1 was discovered in 1991 as a key thrombin receptor on platelets [5, 6]. Although human and mouse PAR2 genes are homologous to PAR1 genes, PAR2 is not responsive to thrombin [2, 7, 8]. Unexpected responses of platelets to thrombin in PAR1 knockout mice lead to the discovery of the thrombin receptors PAR3 and PAR4 [4, 9, 10]. PAR regulation varies between species and tissues, with differing expression levels, protease cleaving activities, dimerization with other receptors, compartimentalization, trafficking, posttranslational modifications, and co-localization with co-receptors, as shown in Fig. 1.Open in a separate windowFig. 1Mechanisms of PAR activation. PAR activation is regulated by a direct proteolytic cleavage at the N-terminus, b homo- or heterodimerization with other PARs and transactivation through the cleaved tethered ligand, c compartmentalization on the cell surface, d degradation or recycling by endosomal trafficking, e posttranslational modifications such as glycosylation, phosphorylation, and ubiquitination, and f co-localization with other receptors and cofactorsStudies of PAR activation under physiological conditions are crucial for the understanding of the pathophysiological roles of PARs, such as those in inflammatory disorders.Cleavage and activation of PARs and signal transductionPARs are specifically cleaved and irreversibly activated by various endogenous proteases, and by exogenous proteases from bacteria, plants, fungi, and insects. Proteases, soluble or cell membrane associated (bound to co-receptors or specific membrane compartments), cleave specific N-terminal peptides of PARs, resulting in exposure of new N-terminal peptides that serve as tethered activation ligands, which bind a conserved region on extracellular loop 2 (ECL2) [5, 11]. This interaction initiates conformational changes and alters affinity for intracellular G proteins [12]. Various N-terminal cleavage sites have been described, and these have various active conformations with specific G protein preferences. Multiple cleavage site-specific cellular responses are generally referred to as biased signaling, and the ensuing models describe how distinct proteases with distinct cleavage sites induce protease-specific responses via the same PAR [13, 14].In contrast with PAR-activating proteases, other proteases cleave PARs at cleavage sites that are not related to signaling. Under these conditions, shedding of the PAR1 terminus, which removes the thrombin activation site, was first recognized as a mechanism for rendering platelets irresponsive to thrombin [15]. These truncated PARs can no longer be proteolyticaly activated, but remain activated by ligands from adjacent PARs [16]. Alternatively, truncated PARs bind soluble peptides with affinity for ECL2 by mimicking the tethered ligand. Both mechanisms result in receptor activation [17, 18]. Multiple ECL2-binding agonist peptides have been described and shown to induce signaling from truncated and uncleaved PARs (see agonist peptides in Tables 5, ​,6,6, ​,77).Table 5PAR1 signaling modulatorsClassAgonist/ AntagonistNameReceptor/Cell/Tissue typeCellular responsePeptideAgonistSFLLRN/−NH2HumanInduces platelet activation [6, 138, 265, 278, 279]TFLLRN/−NH2HumanInduces platelet activation, enhances endothelial barrier permeability [137, 138, 265]NPNDKYEPF/−NH2HumanInduces cytoprotective signaling [28, 187]PRSFLLRN/−NH2HumanInduces platelet activation [86]HumanInduces ERK1/2 activation [280]AntagonistYFLLRNHumanCompets with thrombin and PAR1-AP and prevents platelet activation [278, 279]PeptidomimeticAntagonistRWJ-56110HumanBlunts thrombin and PAR1-AP effects on platelets and vascular endothelial cells [264, 281, 282]HumanBlocks MMP-1 activaiton in SMCs [87]RWJ-58259Guinea pigBlocks thrombin and PAR1-AP platelet activation [215, 283]RatBlocks thrombin induced calcium release in AoSMC Inhibits intimal thickening [111, 215, 264, 273]MousePrevents destruction of intestinal barrier [62, 284]Non-peptide small moleculeAntagonistFR17113HumanBlocks PAR1-AP induced platelet activation [285, 286]HumanInhibits thrombin and PAR1-AP induced ERK1/2 activation [287]{"type":"entrez-nucleotide","attrs":{"text":"ER129614","term_id":"128975082","term_text":"ER129614"}}ER129614–06HumanBlocks thrombin and PAR1-AP induced platelet activation [288]Guinea pigShows antithrombotic effects [289]{"type":"entrez-nucleotide","attrs":{"text":"F16357","term_id":"1132624","term_text":"F16357"}}F16357, {"type":"entrez-nucleotide","attrs":{"text":"F16618","term_id":"1132885","term_text":"F16618"}}F16618HumanBlocks PAR1-AP induced platelet activation [290]RatShows antithrombotic effects [291]{"type":"entrez-protein","attrs":{"text":"SCH79797","term_id":"1052762130","term_text":"SCH79797"}}SCH79797HumanBlocks thrombin and PAR1-AP induced calcium release and platelet activation [292]Human, MouseInduces NETs formation and increases bacterial killing capacity [293]SCH203009HumanBlocks thrombin and PAR1-AP induced platelet activation [292]SCH530348 (vorapaxar)Human, MonkeyBlocks thrombin and PAR1-AP induced platelet activation [266]E5555 (atopaxar)HumanBlocks thrombin and PAR1-AP induced platelet activation and inhibits thrombus formation [267]Guinea pigBleeding time not affected [267, 294]Q94HumanBlocks thrombin induced calcium release [295]MouseBlocks thrombin induced ERK1/2 activation [296]PepducinAntagonistP1pal-12HumanBlocks thrombin induced platelet activation [268]HumanBlocks platelet activation [86]HumanBlocks MMP-1 induced endothelial damage [297]MouseReduces lung vascular damage and sepsis lethality [297, 298]P1-pal7(PZ-128)HumanBlocks MMP-1 induced Akt signaling in cancer cells [150]HumanBlocks platelet activation [86]MouseInhibits tumor growth [280]Guinea pigPrevents from systemic platelet activation [86]ParmodulinAntagonistML161 (Parmodulin-2)HumanBlocks thrombin and PAR1-AP induced platelet activation [299]HumanBlocks thrombin induced inflammatory signaling on endothelial cells [269]MouseBlocks thrombus formation [300]AntibioticAntagonistDoxycyclineHumanInhibits thrombin induced cancer cell migration [301, 302]HumanBlocks MMP-1 cleavage [303]AntibodyAntagonistATAP-2WEDEHumanBlocks thrombin cleavage of PAR1 and thrombin induced calcium release [147]Open in a separate windowTable 6PAR2 signaling modulatorsClassAgonist/ AntagonistNameReceptor/Cell/Tissue typeCellular responsePeptideAgonistSLIGRL/−NH2Human, RatInduces calcium release [2, 8, 136, 139]SLIGKV/−NH2HumanInduces calcium release [136]2f-LIGRLO/−NH2Human, RatInduces calcium release [140]AntagonistFSLLRY-NH2HumanBlocks trypsin, not SLIGRL activation, reduces proinflammatory IL-8 and TNFα [82]RatInhibits neuropathic pain [304]LSIGRL-NH2HumanBlocks trypsin, not SLIGRL induced calcium release [305]PeptidomimeticAntagonistK14585,K12940HumanReduces SLIGKV induced calcium release [306]HumanInhibits SLIGRL induced NFkB activation [307]C391aHuman, MouseBlocks calcium release and MAPK activation [308]Non-peptide small moleculeAgonistGB110HumanInduces calcium release [309]AC-5541,AC-264613HumanInduces calcium release [310]RatInduces edema and hyperalgesia [310]AntagonistENMD-1068HumanBlocks p.acnes induced calcium release and induction of IL-1a, IL-8 and TNFα [92]HumanInhibited FVIIa induced cancer cell migration [311]MouseReduces joint inflammation [260]MouseBlocks calcium release and reduces liver fibrosis [312]GB83HumanInhibits trypsin and PAR2-AP calcium release [313]GB88HumanBlocks PAR2 induced calcium release [309]RatReduces acute paw edema, inhibits PAR2-AP induced inflammation [309, 314]AZ8838AZ3451HumanBlocks PAR2-AP induced calcium release and β-arrestin recruitment [315]PepducinAntagonistP2pal-18SHumanBlocks PAR2 induced calcium release [316]MouseDecreases risk for developing severe biliary pancreatitis [317]P2pal-14GQHumanBlocks PAR2 induced calcium release [316]AntibioticAntagonistTetracyclines(Tetracycline,Doxycycline,Minocycline)HumanInhibits SLIGRL induced IL-8 release [318]MouseTopical application of tetracycline decreases PAR2 induced skin inflammation [319]RatSubantimicrobial doses of doxycycline inhibit PAR2 induced inflammation [320]AntibodySAM-11MouseReduces joint inflammation [260]MousePrevents allergic inflammation [124]B5MouseReduces joint inflammation [260]MouseInhibits allergic airway inflammation [124]MAB3949HumanBlocks trypsin induced PAR2 activation [315]Open in a separate windowTable 7PAR4 signaling modulatorsClassAgonist/ AntagonistNameReceptor/Cell/Tissue typeCellular responsePeptideAgonistGYPGQV/−NH2Human, RatInduces platelet activation [144]GYPGKF/−NH2Human, RatInduces platelet activation [144]AYPGKF/−NH2Human, MouseInduces platelet activation [145]PeptidomimeticAntagonisttc-YGPKFRatBlocks thrombin and PAR4-AP induced platelets aggregation [321]Non-peptide small moleculeAntagonistYD-3HumanBlocks thrombin induced platelet activation [282, 322–325]Mouse, Rat, RabbitBlocks thrombin and PAR4-AP induced platelets activation [323–325]ML-354HumanBlocks PAR4-AP induced platelet activation [326–328]BMS-986120HumanBlocks PAR4-AP induced calcium release and platelet activation [329]HumanBlocks thrombus formation at high shear stress [277]MonkeyBlocks platelet activation [329]PepducinAntagonistP4pal-10Human, MouseBlocks thrombin and PAR4-AP induced platelet activation [268]RatBlocks thrombin and PAR4-AP induced platelets activation [330]P4pal-i1HumanBlocks PAR4 induced platelets activation [150]Open in a separate windowPAR activation by proteolytical cleavagePAR-cleaving proteases are a focus of many current studies. Whereas some PAR-cleaving proteases produce N-terminal components with regulatory roles, others render the receptors irresponsive to further protease exposure as shown in Fig. 2 and summarized in Tables 1, ​,2,2, ​,33 and ​and4.4. Important proteases are discussed below.Open in a separate windowFig. 2Proteolytic PAR cleavage. a N-terminal sequences of human PARs (PAR1–4) containing potential cleavage sites. b Proteolytic cleavage of PARs by soluble exogenous proteases exposes new N-terminal sequences that serve as tethered ligands for G protein dependent activation of receptors. Alternatively, proteolytic cleavage at other sites destroys the function of the receptor to prevent intracellular signal transductionTable 1PAR1 cleaving proteasesProteaseMajor cleavage siteAdditional cleavage sitesMammalian proteasesThrombinR41S42aPCR46N47R41S42FVIIaunknownFXaR41S42TrypsinR41S42ChymaseunknownMMP-1D39P40, L44L45, F87I88N47P48, R70L71,K82Q83MMP-2L38D39MMP-3,-8,-9R41S42MMP-12unknownMMP-13S42F43L38T39, mouseCathepsin GR41S42, F55W56, Y69R70Neutrophil elastaseA36T37, V72S73, A86F87Proteinase-3A36T37, P48N49, V72S73, A92S93PlasminK32A33, R41S42, R70 L71, K76 S77, K82 Q83Kallikrein-4,-5,-6unknownKallikrein-14R46N47Granzyme A,B, KunknownCalpain-1K32A33, S76K77Non-mammalian proteasesPA-BJR41S42, R46N47ThrombocytinR41S42, R46N47DerP1unknownGingipain RR41S42SpeBL44L45LepAunknownS.pneumoniae proteasesunknownThermolysinF43L44, L44L45penCR41S42Open in a separate windowTable 2PAR2 cleaving proteasesProteaseMajor cleavage siteAdditional cleavage sitesMammalian proteasesThrombinR36S37aPCunknownFXaR36S37TrypsinR36S37K34G35, K51G52, K72L73TryptaseR36S37ChymaseG35R36L38I39, mouseMatriptaseR36S37Cathepsin GF65S66F59S60, F64S65Cathepsin SG40K41E56P57, mouseNeutrophil elastaseA66S67, S67V68V42D43,V48T49,V53T54,V58T59,T74T75,V76F77Proteinase-3D62E63V48T49,V55E56,T57V58 V61D62,K72L73,T74T75,T75V76,V76F77PlasminR36S37K34G35TestisinunknownKallikrein-4,unknownKallikrein-5,-6,-14R36S37Calpain-2unknownNon-mammalian proteasesDer-P1,-P2,-P3,-P9unknownCockroach E1-E3R36S37Gingipain RunknownLepAunknownEPaS37L38S38L39, ratS.pneumoniae proteasesunknownThermolysinunknownSerralysinunknownP.acnes proteasesunknownaPAunknownBromelainunknownFicinunknownPapainunknownpenCR36S37Open in a separate windowTable 3PAR3 cleaving proteasesProteaseMajor cleavage siteAdditional cleavage sitesMammalian proteasesThrombinK38T39mouse PAR3 at K37S38aPCR41G42FXaR41G42TrypsinunknownOpen in a separate windowTable 4PAR4 cleaving proteasesProteaseMajor cleavage siteAdditional cleavage sitesMammalian proteasesThrombinR47G48TrypsinR47G48Cathepsin GR47G48Kallikrein-14unknownNon-mammalian proteasesPA-BJR47G48ThrombocytinR47G48Der-P3unknownGingipain RR47G48LepAunknownS.pneumoniae proteasesunknownBromelainunknownFicinunknownPapainunknownOpen in a separate windowMammalian proteasesSerine proteases Thrombin, the key protease of coagulation, is generated by proteolytic cleavage of zymogen prothrombin. Although thrombin production predominantly occurs on platelets and subendothelial vascular walls, extravascular thrombin has been detected in synovial fluid [19] and around tumors [20]. Thrombin has long been known to activate platelets, and the discovery of PAR1 initiated research into the underlying molecular mechanisms. PAR1 contains a hirudin-like domain, which has a high affinity thrombin binding site and recruits thrombin via exosite I. This interaction enables thrombin to specifically and efficiently activate PAR1 [6]. Similarly, PAR3 contains a hirudin-like thrombin recruitment site, which results in cleavage [9, 21]. In other studies, mouse PAR3 maintained thrombin recruitment activity but lost its receptor function, as discussed above [22–24]. Thrombin also cleaves and activates PAR4, which, in contrast with PAR1, lacks a hirudin-like domain. Thus, higher concentrations of thrombin activate PAR4 and initiate intracellular signaling [10]. PAR2 is considered the only PAR that resists cleavage or activation by thrombin [4, 25], although emerging evidence suggests that at very high concentrations (100–500 nM), thrombin may directly cleave and activate PAR2 [26, 27].In contrast with thrombin, the anticoagulant protease activated protein C (aPC) binds to the co-receptor endothelial protein C receptor (EPCR) to promote the cleavage and activation of co-localized PAR1 [28, 29] and induce anti-apoptotic and protective effects on endothelial barrier permeability [29–33]. Compartmentalization of PAR1 and co-localization with EPCR in calveolae is crucial for efficient cleavage by aPC [13]. Moreover, aPC cleaves PAR3 in humans and mice [21, 34, 35] and acts as a PAR3 shedding protease that prevents thrombin-induced barrier disruption [21]. However, the dependency of aPC cleavage of PAR3 on EPCR remains controversial [21, 35]. Similar to aPC, coagulation factor Xa binds EPCR and mediates proteolytic activation of PAR1 and PAR3 [21, 28, 36–39]. In addition, EPCR-bound factor Xa reportedly cleaves PAR2 and initiates inflammatory signaling [40]. PAR2 was also shown to be activated by tissue factor (TF)-bound coagulation factor VIIa [40–42]. Yet recent studies suggest that the TF-VIIa complex does not directly activate PAR2, and rather activates matriptase, which cleaves and activates PAR2 [42–44]. Anti-inflammatory signaling was also previously related to PAR1 cleavage by EPCR-bound VIIa [45, 46]. Taken together, these studies indicate that TF-Xa–VIIa complexes activate PAR1 and PAR2 [47].Trypsins are PAR-activating proteases with roles as major digestive enzymes in the duodenum [48]. Trypsin is also secreted by epithelial cells, nervous system cells [49], and tumor cells [50, 51]. Trypsins may also be involved in cell growth and coagulation, as suggested by secretion from human vascular endothelial cells [52]. Trypsin cleaves human PAR1 and PAR4 at putative protease cleavage sites, and thereby prevents thrombin signaling in endothelial cells and platelets [4, 53]. Trypsin is the major PAR2 cleaving protease that initiates inflammatory signaling [2, 7].Tryptase is the main protease of mast cells, and activates PAR2 by proteolytic cleavage to induce calcium signaling and proliferation [54–57]. The source tissue of tryptase reportedly plays an important role in the cleavage and induction of tryptase-activated PAR signaling, reflecting differences in posttranslational modifications, such as glycosylation and sialic acid modifications [54, 58]. Tryptase induces calcium signaling via PAR1 when PAR2 is co-expressed, but cannot activate human platelets, suggesting that tryptase does not directly cleave PAR1 [54–57]. Chymase is a mast cell serine protease that also cleaves PAR1 in human keratinocytes and fibroblasts, and thus prevents thrombin sensitivity [59]. Moreover, the epithelial serine protease matriptase cleaves and initiates inflammatory responses in human and mouse keratinocytes and in Xenopus oocytes overexpressing human PAR2 [44, 60–63].PARs have been identified as substrates of kallikreins, which are serine proteases that have been related to various inflammatory and tumorigenic processes [64]. Kallikrein-4 increases intracellular calcium levels via PAR1 and PAR2, but activates PAR1 most efficiently [65]. Kallikrein-14 induces calcium signaling via PAR1, PAR2, and PAR4, but can also shed PAR1 to prevent signaling. Rat platelets are activated by kallikrein-14 via the proteolytic cleavage of PAR4, but are not activated by kallikrein-5 and kallikrein-6 [66]. Instead, neurotoxic effects of kallikrein-6 were inhibited by blocking PAR1 and PAR2, indicating a direct proteolytic role in PAR activation [67].Neutrophils are mobilized to sites of inflammation and infection, where they modulate inflammatory signaling, in part by secreting PAR-cleaving proteases. The neutrophil serine protease cathepsin G prevents thrombin-induced effects by cleaving PAR1 into non-functional parts [68, 69]. In contrast, cathepsin G reportedly induced chemoattractant signaling via PAR1, further supporting the role of cathepsin G in PAR1 activation [70]. Another unexpected observation of cathepsin G was that cleavage sites differ between recombinant and native human PAR2 [26, 71, 72]. These discrepancies may reflect the influence of cell types and posttranslational modifications on PAR cleavage. Studies in mice and humans show that platelet activation by cathepsin G is dependent on PAR3 and PAR4 [71, 73, 74]. Cathepsin G also cleaves and activates PAR4 on endothelial cells [75]. The neutrophil proteases elastase and proteinase-3 cleave recombinant PAR1 and PAR2 at various sites [26, 72]. Recently, rat elastase was shown to cleave and activate PAR1, although sequences of rat and human PAR1 have low homology [76]. In contradiction with neutrophil proteases that prevent PAR signaling at sites of inflammation, monocytes secret the protease cathepsin S, which initiates inflammatory signaling by cleaving PAR2 [72, 77, 78]. Low concentrations of the fibrinolytic protease plasmin prevent platelet activation by cleaving PAR1, whereas high concentrations of plasmin lead to the cleavage and activation of PAR1 [79]. Plasmin also cleaves PAR2 and prevents subsequent activation by trypsin [26, 80].The serine proteases granzyme A and granzyme B induce intracellular signaling pathways that lead to neuronal death via PAR1 [81, 82]. Recently, granzyme K was also shown to activate PAR1 and promote inflammatory endothelial signaling [83, 84]. Few studies show activation of PAR1 by proteases of the granzyme family, and the details of this interaction remain poorly characterized.Cysteine proteases Calpain-1 is a calcium-dependent cysteine protease that has been associated with inflammatory disorders, and initiates calcium signaling pathways by activating PAR1 [26]. At very high concentrations, calpain-2 was also shown to cleave PAR2, and the authors suggested that this cleavage event inactivated PAR2 [26]. Recently, calpain-1 was shown to be induced by thrombin-activated PAR1, and subsequently regulated the internalization of PAR1 [85].Metalloproteases Matrix metalloproteases (MMPs) are known to be involved in various inflammatory- and cancer-related conditions. MMP-1 cleaves human PAR1 and initiates platelet activation [86–89]. MMP-1 also regulates cancer cell activities depending on PAR1 availability [90]. Similarly, MMP-2 cleaves human PAR1 and enhances platelet activation [91], and MMP-3, MMP-8, and MMP-9 were shown to induce platelet activation via PAR1 [92]. Whether these three MMPs cleave PAR2 is not clear, although PAR2 activation by trypsin induced secretion of MMP-9 in human airways, suggesting that MMP-9 is a PAR2-activating protease [93]. In mice, PAR1 expression was regulated by MMP-12, and activated PAR1 increased MMP-12 secretion [94, 95]. A similar feedback loop involving MMP-12 and PAR2 has been reported in mice [96]. Moreover, MMP-13 was shown to activate PAR1 and induce intracellular signaling [87], and thrombin-induced activation of PAR1 and PAR3 was associated with increased levels of MMP-13 in human chondrocytes [24].In addition to coagulation and inflammation, PAR activation may play roles in human germ cells, where the serine protease testisin activates PAR2 and induces calcium signaling and ERK1/2 activation. This interaction may play roles in the regulation of ovarian and testicular cancer, as suggested previously [97, 98].Non-mammalian proteasesExogenous proteases from various species that modulate PAR activation are disscues in the following section and are summarized in Fig. 3.Open in a separate windowFig. 3Non-mammalian exogenous proteases induce PAR-driven pathological effects. Various proteases are secreted from bacteria, amoebae, insects, plants, fungi, and snakes, and can cleave PARs and modulate signal transduction, leading to inflammation, thrombosis, or painBacterial proteases Endogenous mammalian proteases are not the only regulators of PAR activation. Indeed, both pathogenic and commensal bacteria secret various proteases that cleave PARs and act as inflammatory modulators [99]. In this section, we describe bacterial proteases that either activate PARs, and thus allow bacteria to penetrate host barriers, or inactivate PARs to prevent inflammatory signaling by the host.The human pathogen Pseudomonas aeruginosa secrets two PAR-cleaving proteases with contrasting effects. The exoprotease LepA cleaves and activates PAR1, PAR2, and PAR4, and subsequently induces nuclear factor kappa B (NFκB) promoter activity [100], whereas cleavage by elastase EPa inactivates PAR2 to prevent inflammation in lungs [101].The streptococcal pyrogenic exotoxin B (SpeB) of Group A Streptococcus also inactivates PAR1 by cleaving it, and thereby renders human platelets unresponsive to thrombin [102]. In mice, proteases of Streptococcus pneumoniae cleaved PAR2 and facilitated the spread of the pathogen from the airways into the blood stream [103]. PAR1 has also been associated with S. pneumonia-mediated sepsis in mice, although direct cleavage of PAR1 was not shown [104, 105]. Pulmonary inflammation from S. pneumoniae infections is reduced in PAR4 knockout mice [106], further supporting this causal link.Inflammation-associated periodontal diseases are predominantly induced by the Porphyromonas gingivalis cysteine protease gingipain R, which activates PAR2 [107, 108]. Subsequently, gingipain R activates PAR1 and PAR4, and thereby, human platelets [109–111]. This mechanism may also explain associations between periodontitis and cardiovascular events [112].In addition, supernatants from Propionibacterium acnes cultures initiated inflammatory signaling in human keratinocytes via PAR2 [92]. The virulence of P. acnes was also reduced in PAR2 knockout mice [113], further suggesting that PAR2 is involved in bacterial infections.Serralysin is a matrix metalloprotease expressed by Serratia marcescens, and induced inflammation in human airway cells via PAR2 in vitro [114].Finally, Bacillus thermoproteolyticus rokko secretes the metalloprotease thermolysin, which cleaves and inactivates PAR1 to prevent thrombin-induced signaling in rat astrocytes [115, 116]. The in vitro effects of PAR2-cleavage by thermolysin, however, vary between cell lines [116].Amoeba proteases In acanthamoebic keratitis, PAR2 triggers inflammation following secretion of the plasminogen activator (aPA) by Acanthamoeba strains, leading to induction of IL-8 in human corneal epithelial cells [117].Reptile proteases Following snakebites, coagulation disorders in humans and mice occur due to the presence of venom proteases. In Proatheris superciliaris bites, venom proteases activate platelets by activating PAR1 and PAR4 [118]. Bothrops atrox and B. jararaca are snake species of the family viperidae. These snakes secrete the serine proteases PA-BJ and thrombocytin, which activate human platelets via PAR1 and PAR4 [119].Insect proteases Several cysteine and serine proteases from insects induce inflammation-associated diseases such as asthma. For example, dust mite allergens contain the serine proteases DerP2, DerP3, and DerP9 [120] and the cysteine protease DerP1. DerP1 induces PAR2-dependent signaling, whereas thrombin-induced PAR1-signaling is prevented by these proteases in human epithelial cells [121]. DerP3 was also recently shown to activate PAR4, and this process was associated with allergies to dust mites [122].Similar to proteases from house dust mites, three serine proteases (E1–E3) from cockroach extracts activate PAR2 and induce inflammatory signaling in mice and humans [123–125].Fungal proteases Pen C is a serine protease from Penicillium citrinum that induces IL-8 in human airway cells by activating PAR1 and PAR2 [126]. Proteases from Aspergillus fumigatus have also been shown to prevent PAR2-dependent inflammation [127]. Moreover, serine proteases from Alternaria alternate induced calcium signaling in human bronchial cells and induced inflammation in mice by secreting IL-33 following PAR2 activation [128–130].Plant proteases Bromelain is a mixture of cysteine proteases that is extracted from pineapple which is used as a PAR-independent anti-inflammatory agent [131]. Bromelain cleaves PAR2 and thereby prevents the associated inflammatory signaling [132]. In another study, however, bromelain, ficin, and papain activated PAR2 and PAR4 by proteolytic cleavage, leading to increased intracellular calcium levels [133]. Thus, further studies are required to further clarify the modes of action of pineapple proteases.Cleavage-independent PAR activation by agonist peptidesIndependent of proteolytic cleavage, PARs can be activated by synthetic soluble ligands corresponding with cleaved N-terminal sequences, or can be transactivated by cleavage-generated N-terminal regions of homo- or heterodimer partners.Synthetic peptides that mimic the first six amino acids of tethered N-terminal ligands can act as agonist peptides that activate PARs in the absence of cleavage events [11, 18, 134]. Specific activation of PARs by a soluble agonist peptide was first shown for human PAR1 with the peptide SFLLRN [6, 18]. However, this peptide also activated PAR2 [135–137] and therefore various peptides were tested for specific PAR1 activation. Yet, PAR1 was the most specifically and efficiently activated by TFLLRN [138]. In addition to thrombin agonist peptides, other PAR1 agonist peptides have been identified. In particular, the peptide NPNDKYEPF reproduced the effects of aPC [28], and PRSFFLRN corresponds with the N-terminal peptide generated by MMP-1 [86]. SLIGKV corresponds with the trypsin cleaved N-terminal region of human PAR2. However, the corresponding rat N-terminus SLIGRL is a more specific and efficient PAR2 agonist in rodents and humans [136, 139], and only the synthetic peptide LIGRLO achieved this effect more efficiently than SLIGRL in humans [140]. The roles of ECL-2 in specific PAR activation have been shown using labeled PAR2 agonist peptides [141, 142]. Because the thrombin generated PAR3 peptide does not activate the G protein autonomously, no such agonist peptides have been identified to date [9, 143]. GYPGKF corresponds with the thrombin-cleaved human PAR4 and has weak activity as an agonist [144]. But replacement of the first amino acid glycine (G) with alanine (A) induced PAR4 by 10-fold. This peptide may be suitable as a platelet activator in humans and mice [145].Several models of PAR–PAR interactions have been proposed and extensively studied based on PAR transactivation by agonist peptides [146]. When PAR1 is blocked on endothelial cells, however, thrombin, and not the PAR1-specific agonist peptide TFLLRN, induces signaling, reportedly by facilitating the heterodimerization of PAR1 and PAR2 [147]. Thrombin activation of the PAR1–PAR2 heterodimer leads to constitutive internalization and activation of β-arrestin by the PAR1 C-tail [146]. Accordingly, the required co-localization of PAR1 and PAR2 was shown in a human overexpression system, in mice studies of sepsis, and in PAR1–PAR2-driven cancer growth in a xenograft mouse model [148, 149]. In other studies, stable heterodimerization of human PAR1 and PAR4 was shown in platelet cells, and thrombin accelerated platelet activation under these conditions [150, 151]. Similar studies of mouse platelets showed efficient activation of platelets by thrombin in the presence of PAR3–PAR4 heterodimers [143]. Consistent with the thrombin-cleaved PAR3 peptide, which is not self-activating, PAR3 signaling was observed in the presence of PAR1 or PAR2 [22, 23, 34, 152]. Yet, heterodimerization influenced signal transduction and PAR membrane delivery due to enhanced glycosylation [153].In addition to activation by heterodimerization, PARs interact with other receptors, such as ion channels, other G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), receptor serine/threonine kinases (RSTKs), NOD-like receptors, and TLRs [154]. In particular, PAR2 initiated inflammatory signaling pathways, resulting in pain due to transactivation of the ion channels TRPV1 and TRPV4 in humans and mice [155–159]. Similar inflammatory effects follow transactivation of the RTKs EGFR and VEGFR by PAR2 and PAR4 [160–163]. Bacterial interactions with PARs suggest important roles of PARs in infectious disease. In agreement, TLRs recognize bacteria-derived molecules and contribute to innate immunity [164, 165]. Moreover, direct interactions of PAR2 with TLR3 and TLR4 were necessary for inflammatory responses to LPS in human cell lines and knockout mice and rats [166–171].PAR signalingActivation pathwaysPARs belong to a large family of GPCRs and induce multiple signaling pathways after coupling with heterodimeric G proteins. Activation of the Gα-subunit due to the exchange of a guanine from GDP to GTP results in dissociation of the Gβγ-dimer and activation of downstream pathways [172, 173].Following proteolytic cleavage or induction of agonist peptides, the engaged signaling pathways vary between tissues, cell lines, and the availability of co-receptors for transactivation. Depending on the ligand, specific α-subunits are activated, and these regulate subsequent cellular functions as summarized in Fig. 4. For example, thrombin-stimulated PAR1 activates the small GTPase protein RhoA via ERK1/2 kinases, but not via Rac1, whereas aPC-stimulated PAR1 induces Rac1 via Akt kinase, but not via RhoA [13, 174–176]. Moreover, in accordance with PAR1 cleavage sites, aPC prevents thrombin-induced RhoA signaling [16]. However, in contrast with thrombin-induced RhoA activation on platelets and endothelial cells, PAR1-agonist peptides and thrombin activated the inhibitory G protein Gi which leads to the inhibition of adenylyl cyclase in human fibroblasts [177, 178]. Other studies indicate that PAR2 activation is less tissue specific than PAR1 activation, and trypsin and VIIa cleaved PAR2 and activated Gαq and Gi, resulting in calcium influx, MAPK activation, and inflammatory signaling [8, 179].Open in a separate windowFig. 4G protein-coupled signaling induced by PAR activation. Depending on the tethered ligand, activated PAR couples with G protein α-subtypes. Gαq activates phospholipase Cβ (PLCβ), which mobilizes calcium. This further activates MAPKs (ERK1/2) and induces Ras signaling. Primarily, Gα12/12 and Gaq activate the Rho pathway. Gαi inhibits the activation of adenylyl cyclase, which leads to reduced production of cAMP. In contrast, the βγ-subunit functions as a negative regulator when bound to the α-subunit. After receptor activation, subunits separate, and the βγ-subunit interacts with other proteins, thereby activating or inhibiting signalingSignaling by tethered ligands can differ from that generated by corresponding soluble agonist peptides. For example, thrombin-cleaved PAR1 activated Gα12/13 and Gαq and induced Rho and Ca2+ signaling, whereas the PAR1-agonist peptide activated only Ga12/13 and downstream RhoA-dependent pathways that affected endothelial barrier permeability [180]. Similar observations of human platelets suggested that platelet activation followed coupling of thrombin-activated PAR1 with multiple heterotrimeric G protein subtypes, including Gα12/13 and Gαq [181–183]. Moreover, trypsin and the PAR2-agonist peptide induced ERK1/2 signaling and inflammation by activating PAR2 [29, 180, 184–186]. β-arrestins also play major roles in PAR-induced signaling independently of G protein activation. For instance, aPC-activated PAR1 induces cytoprotective effects by recruiting β-arrestin in endothelial cells. Thus, aPC cleavage fails to protect β-arrestin deficient cells from the effects of thrombin [187, 188]. In addition, multiple studies show that activated PAR2 co-localizes with β-arrestin-1 and arrestin-2 and induces ERK1/2 signaling [77, 189–191].Desensitization and terminationPAR activation is regulated by internalization and proteolytic desensitization, which limits the duration of signaling. For instance, PAR1 is constitutively internalized and recycled or agonist-induced internalized and degraded as described in [192, 193] and shown in the scheme of Fig. 5. As discussed above, some PAR-cleaving proteases abolish receptor responses by removing (shedding) or destroying the tethered ligands. For example, PAR1 is inactivated following cleavage by cathepsin G, and thrombin activation is hence prevented, allowing the formation of clotting under inflammatory conditions.Open in a separate windowFig. 5PAR trafficking. Activation-independent constitutive or agonist-induced internalization regulates PAR1 signalingDepending upon proteolytic cleavage, PAR1 rapidly internalizes or accumulates on the cell surface [194, 195]. Activated PAR1 is internalized via clathrin- and dynamin-dependent mechanisms, and is sorted from early endosomes to lysosomes for degradation [196–199]. Although the mechanisms that terminate PAR1 signaling are not clearly understood, this process is known to involve phosphorylation, ubiquitination, and recruitment of β-arrestin [200–204]. In contrast with PAR1, activated PAR2 is not constitutively internalized [205]. Thus, to prevent persistent signaling upon activation, PAR2 is phosphorylated and ubiquitinated and then binds β-arrestin before being internalized and degraded [206–208]. Under these conditions, the activated and internalized PAR2 is not recycled and instead induces β-arrestin-dependent endosomal ERK1/2 signaling in the cytoplasm [189, 191, 209]. Thus, large cytoplasmic stores of newly generated PAR2 are required for rapid externalization and activation on cell membranes [210]. Although less is known about how PAR4 signaling is terminated, recent observations suggest that PAR4 internalization is independent of β-arrestin and slowly occurs via clathrin- and dynamin-dependent pathways [211]. In agreement, human platelets internalized PAR4 much slower than PAR1, and exhibited prolonged PAR4 signaling activity [212]. Moreover, growing evidence indicates that PAR–PAR heterodimerization is important for internalization, and that the underlying mechanisms include PAR2-dependent glycosylation of PAR4, thus affecting membrane transport [153]. Upon internalization, endosomal PAR4 dimerizes with the purinergic receptor P2Y12 and induces Akt signaling by recruiting β-arrestin within endosomes [213].Depending on stimuli, PAR expression patterns are regulated by complex combinations of cell surface presentation, endocytosis, vesicle born or recycled (i.e., re-exocytosed) receptors, and trafficking modes that are linked to posttranslational modifications of PAR.Role of PARs in inflammationWith the current increases in the prevalence of inflammatory diseases, published in in vitro and in vivo studies of the roles of PARs in inflammation have become more numerous. These are reviewed below.Systemic inflammation and inflammatory cells in the cardiovascular systemPARs are critical for the interplay between clotting proteases of platelets, endothelial cells, and vascular smooth muscle cells that regulate hemostasis, vascular barrier function, vascular tone, vascular homeostasis, cell adhesion, and inflammatory responses [150]. The roles of PARs in these processes vary significantly between species. Specifically, whereas functional PAR1 and PAR4 are expressed in human platelets [214], PAR1, PAR3, and PAR4 have been found in guinea pig platelets [215]. Whereas mouse and rat platelets lack PAR1, they are activated at low concentrations of thrombin, which is recruited by PAR3 onto the surface of platelets and then efficiently activates PAR4 [4]. Due to interspecies differences in PAR expression, mouse and rat studies of PARs are difficult to translate to humans. PARs in endothelial cells contribute positive regulatory signals for endothelial adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin [216, 217], all of which promote vascular barrier function. As a counterpart of intravascular cells, PAR4 induces leukocyte migration [75], and PAR2 expressed on macrophages promotes inflammatory modulators such as interleukin-8 (IL-8) [218]. These modes of signaling all contribute to a complex PAR-mediated interplay of endothelial cells that is orchestrated by intravascular cells and cytokine secretion. In addition, PARs, particularly PAR1, regulate vascular barrier function, and hence, extravasation of macromolecules such as complement proteins and antibodies. In addition, thrombin-mediated activation of PAR1 increases endothelial barrier permeability by activating mitogen-activated protein kinases (MAPKs) [219]. Although this effect is reversed by activated protein C (aPC)-mediated activation of PAR1 [28, 174, 175, 220]. Thrombin further promotes prostaglandin 2 (PGE2) secretion, and consequent endothelial barrier permeability [221]. Similarly, PAR1 activation increased vascular leakage in a murine model [222]. Inflammatory mediators, such as tumor necrosis factor alpha (TNFα), were shown to regulate the expression of endothelial PAR2, and the authors suggested that these data were indicative of barrier protective effects of PAR2 [223]. Several other studies show that PAR2 activation induces endothelium-dependent relaxation in blood vessels of mice and in arteries of rats [224–228]. In contrast, dual activities of PAR2 on blood vessels were reported in a study of rats [229]. In this line, thrombin-activated PAR1 induced the expression of vascular endothelial growth factor in smooth muscle cells [230], thus revealing the relationship between coagulation and vascular growth. Although the roles of PARs in the development of arteriosclerosis are yet to be elucidated, PAR2 and PAR4 were induced in human arteries under inflammatory conditions [223], suggesting important roles of PARs in vascular inflammation.Chronic inflammation of the gastrointestinal tractIn the gut lumen, human and bacterial proteases are both present at high concentrations. Similar to endothelial barriers, proteases regulate intestinal barrier permeability via PARs, all four of which are expressed by cells of the gastrointestinal tract [9, 224, 231, 232]. Trypsins and tryptases are prominent intestinal proteases, suggesting likely involvement of PAR2 as a major receptor of intestinal inflammation. In accordance, intestinal tight junctions are disrupted by PAR2-activating proteases, leading to inflammatory signaling in humans and rats [139, 206, 233, 234]. Although the roles of PARs in irritable bowel syndrome (IBS) and inflammatory bowel diseases remain unclear, roles of PARs in intestinal barrier function have been described. Specifically, PAR1 and PAR2 regulated permeability and chloride secretion, which are involved in diarrhea and constipation in IBS patients [234–236]. In addition, activated endosomal PAR2 caused persistent pain in a mouse model of IBS [209].Inflammatory diseases of the respiratory systemIt has long been suggested that PARs are involved in the pathophysiology of respiratory disorders, reflecting observations of elevated levels of PAR-activating proteases, such as thrombin and tryptase, in bronchoalveolar lavage fluid from patients with pulmonary inflammation [237, 238]. In a sheep asthma model and in asthmatic patients, tryptase inhibitors reduced inflammation [239, 240], further indicating important roles of PAR2 in respiratory disease. These roles of PARs are also suggested by the prominence of a variety of non-mammalian PAR-activating proteases, such as those of house dust mites and cockroaches [120, 123, 124]. Expression of PAR1, PAR2, and PAR4 on bronchial epithelial and smooth muscle cells induced inflammatory signaling in multiple studies [55, 121, 241–245]. PAR2 is also upregulated in epithelial cells of patients with asthma and chronic obstructive pulmonary syndrome (COPD) [246, 247]. Whether PAR2 activation results in bronchoconstriction or dilatation remains controversial, in part owing to interspecies differences and tissue dependencies [242, 248, 249]. In humans, however, PAR1-agonist peptides with thrombin, and a PAR2-agonist peptide with trypsin and tryptase, induced bronchoconstriction by inducing Ca2+ signaling in airway smooth muscle cells [241, 244]. Moreover, the long-term activation of PAR1 and PAR2 led to pulmonary fibrosis in mice models [250].Inflammatory skin diseasesHigh concentrations of exogenous proteases are present on the skin of various species, and these may activate PARs to regulate epidermal permeability and barrier function [251]. Indeed, epidermal inflammation has been linked to PAR1 and PAR2 activation in keratinocytes, which comprise the epidermal barrier with sub-epidermal skin fibroblasts [179, 252, 253]. Subsequent release of IL-8, IL-6, and granulocyte macrophage colony-stimulating factor (GM-CSF) was also observed previously [254], potentially involving NFκB activation [255]. In addition, the inflammatory roles of PAR2 have been demonstrated in mice models of atopic dermatitis due to elevated tryptase and PAR2 expression levels [256, 257]. Similar to studies in mouse models, PAR2 was upregulated in patients with atopic dermatitis, and PAR2 agonists increased itch, causing irresponsiveness of sensory nerves to therapy with antihistamines [258].Rheumatic disease“Rheumatic disease” is a common term for autoimmune diseases that affect joints, bones, and muscles. Although rheumatic disorders are numerous, some of the common underlying symptoms include chronic joint inflammation, stiffness, and pain [259]. Currently, PAR2 is the only PAR that has been associated with the development of rheumatic diseases [260]. Direct roles of PAR2 in rheumatic diseases were first indicated in 2003 in a mouse study by Ferrell et al. [261]. In their study, a PAR2-agonist peptide induced strong inflammatory effects in wt mice, causing joint swelling and synovial hyperemia, whereas joint swelling was absent in PAR2 deficient mice [261]. Similarly, in patients with rheumatoid arthritis, PAR2 is upregulated in inflamed tissues [262]. Further increases in PAR2 expression were noted in monocytes, and the PAR2-agonist peptide upregulated IL-6. In contrast, PAR2 expression was decreased after treatments with antirheumatic drugs [263], further supporting the role of PAR2 in rheumatic disease.PAR modulators as targets for therapyThe complexity of PAR regulation is indicated by the culmination of specific proteolytic cleavage modes (inactivating or activating), protease inhibitors, and cofactors, and with the effects of PAR glycosylation and dimerization (Fig. ​(Fig.1).1). In this section we discuss classes of agonists and antagonists that have been tested as PAR modulators for use as therapeutic agents as summarized in Fig. 6 and Tables 5, ​,66 and ​and77.Open in a separate windowFig. 6PAR modulators. Pharmacological substances, such as 1) peptides and peptidomimetics, 2) blocking antibodies, 3) small molecules, 4) pepducins, and 5) parmodulins are used as therapeutic agents that affect PAR activitiesPeptide agonists and antagonists are short synthetic peptides that mimick the PAR-tethered ligand that is liberated by proteolytic cleavage, as described above. These peptides either induce signal transduction or prevent cleavage-dependent signaling following PAR rapid internalization, and some C- or N-terminal modifications of soluble ligand sequences have resulted in increased activation efficiency [18]. Peptidomimetic antagonists are small protein-like chains that mimick the tethered ligands of PARs, and were recently used as PAR modulators for the first time [264].Soon after PARs were discovered, PAR1 blocking antibodies were reported [265], and these blocked protease binding and or the cleavage site of the receptor. Non-peptide small molecules, such as the PAR1 antagonists vorapaxar [266] and atopaxar [267], also interact with PARs, mainly via ECL2.Only two classes of intracellular PAR antagonists have been developed to date. Pepducins are cell penetrating palmitoylated peptides that were derived from the intracellular loop of PAR, and these interfere with G protein binding [268]. Parmodulins, in contrast, are small molecules that bind PARs at the G protein binding pocket of the C-tail to compete with Gαq subunits, but not with other Gα subunits [269].Examination of agonists and antagonists in vitro and in preclinical studies (Tables ​(Tables5,5, ​,66 and ​and77)Clinical studiesDespite the importance of PARs in various pathophysiological conditions, few PAR modulating tools have been tested in clinical studies, and even fewer have been established for treatment. Since the identification of PAR1 as a platelet thrombin receptor, an abundance of research has been conducted to identify PAR1 antagonists that can block platelet activation and prevent thrombotic cardiovascular events. The first clinically approved PAR1 antagonist was the small-molecule antagonist vorapaxar [266]. Phase II clinical trials of this agent showed reduced risks for myocardial infarction in patients treated with vorapaxar in combination with standard antiplatelet therapy. Moreover, the risks of bleeding complications were not significantly increased [270]. Subsequently, two large-scale phase III multicenter, randomized, double-blind, placebo-controlled studies of vorapaxar (ZONTIVITY, SCH530348) were performed. In the Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events–Thrombolysis in Myocardial Infarction 50 (TRA 2°P-TIMI 50; details at www.ClinicalTrials.gov; {"type":"clinical-trial","attrs":{"text":"NCT00526474","term_id":"NCT00526474"}}NCT00526474) study, the rate of cardiovascular events at the second efficacy endpoint were significantly reduced by vorapaxar in combination with standard antiplatelet therapy [271]. Furthermore, in the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER; details at www.ClinicalTrials.gov; {"type":"clinical-trial","attrs":{"text":"NCT00527943","term_id":"NCT00527943"}}NCT00527943) study, vorapaxar reduced the hazard of first myocardial infarction of any type in patients who were treated within 24 h of having symptoms of a cardiovascular event. However, in the TRACER study, vorapaxar failed to prevent secondary ischemic events [272]. Because vorapaxar increased bleeding complications in the clinical setting, the alternative PAR1 antagonist atopaxar (E5555) [267] was tested in a phase II clinical trial called (Lessons From Antagonizing the Cellular Effects of Thrombin-Acute Coronary Syndromes (LANCELOT-ACS; details at www.ClinicalTrials.gov; {"type":"clinical-trial","attrs":{"text":"NCT00548587","term_id":"NCT00548587"}}NCT00548587) study [273]. Atopaxar inhibited platelet aggregation in ACS patients in a dose-dependent manner, and caused no side effects of abnormal platelet activation, such as bleeding [274, 275]. Yet, patients receiving atopaxar had dose-dependent increases in liver abnormalities [273].To prevent the bleeding problems that arise from treatments with PAR1 antagonists, a new class of PAR1 antagonist was designed, and the member pepducin PZ-128 (P1-pal7) was tested in a phase I trial [276]. This study showed no reduction in platelet aggregation, but the platelet blocking effect of PZ-128 was reversible ex vivo in the presence of saturating concentrations of the PAR1 agonist peptide SFLLRN. Based on these promising findings, the new PAR1 blocking agent PZ-128 was considered in the coronary artery disease study Thrombin Receptor Inhibitory Pepducin-Percutaneous Coronary Intervention (TRIP-PCI). Data from this phase II trial are not yet available (details at www.ClinicalTrials.gov; {"type":"clinical-trial","attrs":{"text":"NCT02561000","term_id":"NCT02561000"}}NCT02561000).As an alternative to PAR1 targeted antithrombotic drugs, the PAR4 small-peptide antagonist BMS-986120 reduced reversible thrombus formation ex vivo in a phase I trial [277]. Consequently, this promising anticoagulant PAR4 antagonist is currently being compared with a standard anticoagulant drug in a phase II study of stroke recurrence (details at www.ClinicalTrials.gov; {"type":"clinical-trial","attrs":{"text":"NCT02671461","term_id":"NCT02671461"}}NCT02671461).ConclusionSince the identification of PARs in the 1990s, studies of the complex mechanisms of PAR activation have been abundant, and these have clarified the roles of PARs in inflammatory disease. Various mammalian and non-mammalian proteases have also been recognized as PAR-mediated regulators of physiological and pathophysiological processes. Despite the development of various PAR modulators, few have been approved for therapeutic use. Obstacles to this therapeutic strategy include species differences in PAR expression and limited bioavailability of modulators in vivo and in clinical studies. Further research is needed to identify specific and efficient anti-inflammatory PAR modulators.AcknowledgementsWe would like to thank Hermenegild K. Heuberger for the drawing of the figures.We thank Enago (http://www.enago.com) for the english language review.FundingWe would like to express our sincere gratitude for the support given to RAS by the Swiss National Science Foundation grant #PZ00P3_136639 for the salary of DMH.Availability of data and materialsData sharing not applicable to this article as no datasets were generated or analysed during the current study.AbbreviationsACAdenylyl CyclaseAKTProtein kinase BaPCActivated Protein CCOPDChronic Obstructive Pulmonary SyndromeCOXCyclooxygenaseECLExtracellular LoopEGFREpidermal Growth Factor ReceptorEPCREndothelial Protein C ReceptorERKExtracellular Signal-regulated KinaseF2RCoagulation Factor 2 ReceptorF2RL1Coagulation Factor 2 Receptor-Like 1F2RL2Coagulation Factor 2 Receptor-Like 2F2RL3Coagulation Factor 2 Receptor-Like 3FVIIaActivated Coagulation Factor VIIFXaActivated Coagulation Factor XGM-CSFGranulocyte Macrophage Colony-stimulating FactorGPCRG Protein-Coupled ReceptorIBDInflammatory Bowel DiseaseIBSIrritable Bowel SyndromeICAMIntercellular Adhesion MoleculeILInterleukinLepAPseudomonas aeruginosa-Derived Large Extracellular ProteaseLPSLipopolysaccharidesMAPKMitogen-Activated Protein KinaseMMPMatrix MetalloproteaseNFκBNuclear Factor kappa BPARProtease-Activated ReceptorpenCPenicillium citrinum-Derived Alkaline Serine Protease CPGE2Prostaglandin E2PI3KPhosphatidylinositol-3-KinasePLCβPhospholipase C betaRac1Ras-Related C3 Botulinum Toxin Substrate 1RhoARas homolog gene family, member ARSTKReceptor Serine/Threonine KinaseRTKReceptor Tyrosine KinaseSpeBStreptococcal Pyrogenic Exotoxin BTFTissue FactorTLRToll-Like ReceptorTMThrombomodulinTRPVTransient Receptor Potential Channels Vanilloid SubtypeVCAMVascular Cell Adhesion MoleculeVEGFVascular Endothelial Growth FactorVEGFRVascular Endothelial Growth Factor ReceptorAuthors’ contributionsManuscript preparation by DMH and RAS. All authors read and approved the final manuscript.NotesEthics approval and consent to participateNot applicable.Consent for publicationNot applicable.Competing interestsThe authors declare that they have no competing interests.Publisher’s NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Contributor InformationDorothea M. Heuberger, Email: hc.zsu@regrebueh.akinomaehtorod.Reto A. Schuepbach, Phone: +41 44 255 1092, Email: hc.zsu@hcabpeuhcs.oter.References1. Bahou WF, Nierman WC, Durkin AS, Potter CL, Demetrick DJ. Chromosomal assignment of the human thrombin receptor gene: localization to region q13 of chromosome 5. Blood. 1993;82:1532–1537. [PubMed] [Google Scholar]2. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–9212. doi: 10.1073/pnas.91.20.9208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]3. Schmidt VA, Nierman WC, Maglott DR, Cupit LD, Moskowitz KA, Wainer JA, Bahou WF. The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a par gene cluster and characterization in vascular endothelial cells and platelets. J Biol Chem. 1998;273:15061–15068. doi: 10.1074/jbc.273.24.15061. [PubMed] [CrossRef] [Google Scholar]4. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–694. doi: 10.1038/29325. [PubMed] [CrossRef] [Google Scholar]5. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–1068. doi: 10.1016/0092-8674(91)90261-V. [PubMed] [CrossRef] [Google Scholar]6. Vu TK, Wheaton VI, Hung DT, Charo I, Coughlin SR. Domains specifying thrombin-receptor interaction. Nature. 1991;353:674–677. doi: 10.1038/353674a0. [PubMed] [CrossRef] [Google Scholar]7. Nystedt S, Larsson AK, Aberg H, Sundelin J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J Biol Chem. 1995;270:5950–5955. doi: 10.1074/jbc.270.11.5950. [PubMed] [CrossRef] [Google Scholar]8. Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem. 1995;232:84–89. doi: 10.1111/j.1432-1033.1995.tb20784.x. [PubMed] [CrossRef] [Google Scholar]9. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997;386:502–506. doi: 10.1038/386502a0. [PubMed] [CrossRef] [Google Scholar]10. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A. 1998;95:6642–6646. doi: 10.1073/pnas.95.12.6642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Gerszten RE, Chen J, Ishii M, Ishii K, Wang L, Nanevicz T, Turck CW, Vu TK, Coughlin SR. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature. 1994;368:648–651. doi: 10.1038/368648a0. [PubMed] [CrossRef] [Google Scholar]12. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol Rev. 2001;53:245–282. [PubMed] [Google Scholar]13. Russo A, Soh UJ, Paing MM, Arora P, Trejo J. Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci U S A. 2009;106:6393–6397. doi: 10.1073/pnas.0810687106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]14. Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014;5:67. doi: 10.3389/fendo.2014.00067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. Renesto P, Si-Tahar M, Moniatte M, Balloy V, Van Dorsselaer A, Pidard D, Chignard M. Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood. 1997;89:1944–1953. [PubMed] [Google Scholar]16. Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT, Coughlin SR. PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem. 2005;280:13122–13128. doi: 10.1074/jbc.M410381200. [PubMed] [CrossRef] [Google Scholar]17. Chen J, Ishii M, Wang L, Ishii K, Coughlin SR. Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem. 1994;269:16041–16045. [PubMed] [Google Scholar]18. Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992;267:13146–13149. [PubMed] [Google Scholar]19. Chang MC, Lan WH, Chan CP, Lin CP, Hsieh CC, Jeng JH. Serine protease activity is essential for thrombin-induced protein synthesis in cultured human dental pulp cells: modulation roles of prostaglandin E2. J Oral Pathol Med. 1998;27:23–29. doi: 10.1111/j.1600-0714.1998.tb02086.x. [PubMed] [CrossRef] [Google Scholar]20. Kohli M, Williams K, Yao JL, Dennis RA, Huang J, Reeder J, Ricke WA. Thrombin expression in prostate: a novel finding. Cancer Investig. 2011;29:62–67. doi: 10.3109/07357907.2010.535057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Burnier L, Mosnier LO. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3. Blood. 2013;122:807–816. doi: 10.1182/blood-2013-03-488957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]22. Kaufmann R, Schulze B, Krause G, Mayr LM, Settmacher U, Henklein P. Proteinase-activated receptors (PARs)--the PAR3 neo-N-terminal peptide TFRGAP interacts with PAR1. Regul Pept. 2005;125:61–66. doi: 10.1016/j.regpep.2004.07.032. [PubMed] [CrossRef] [Google Scholar]23. McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A. 2007;104:5662–5667. doi: 10.1073/pnas.0700763104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Huang CY, Lin HJ, Chen HS, Cheng SY, Hsu HC, Tang CH. Thrombin promotes matrix metalloproteinase-13 expression through the PKCdelta c-Src/EGFR/PI3K/Akt/AP-1 signaling pathway in human chondrocytes. Mediat Inflamm. 2013;2013:326041. doi: 10.1155/2013/326041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A. 1999;96:11023–11027. doi: 10.1073/pnas.96.20.11023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. Loew D, Perrault C, Morales M, Moog S, Ravanat C, Schuhler S, Arcone R, Pietropaolo C, Cazenave JP, van Dorsselaer A, Lanza F. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry. 2000;39:10812–10822. doi: 10.1021/bi0003341. [PubMed] [CrossRef] [Google Scholar]27. Mihara K, Ramachandran R, Saifeddine M, Hansen KK, Renaux B, Polley D, Gibson S, Vanderboor C, Hollenberg MD. Thrombin-mediated direct activation of proteinase-activated receptor-2 (PAR2): another target for thrombin signaling. Mol Pharmacol. 2016;89(5):606–614. doi: 10.1124/mol.115.102723. [PubMed] [CrossRef] [Google Scholar]28. Schuepbach RA, Madon J, Ender M, Galli P, Riewald M. Protease activated receptor-1 cleaved at R46 mediates cytoprotective effects. J Thromb Haemost. 2012;10(8):1675–1684. doi: 10.1111/j.1538-7836.2012.04825.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002;296:1880–1882. doi: 10.1126/science.1071699. [PubMed] [CrossRef] [Google Scholar]30. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med. 2003;9:338–342. doi: 10.1038/nm826. [PubMed] [CrossRef] [Google Scholar]31. Domotor E, Benzakour O, Griffin JH, Yule D, Fukudome K, Zlokovic BV. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1. Blood. 2003;101:4797–4801. doi: 10.1182/blood-2002-12-3680. [PubMed] [CrossRef] [Google Scholar]32. Mosnier LO, Griffin JH. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor. Biochem J. 2003;373:65–70. doi: 10.1042/bj20030341. [PMC free article] [PubMed] [CrossRef] [Google Scholar]33. Ruf W, Riewald M. Tissue factor-dependent coagulation protease signaling in acute lung injury. Crit Care Med. 2003;31:S231–S237. doi: 10.1097/01.CCM.0000057848.27456.04. [PubMed] [CrossRef] [Google Scholar]34. Ranjan S, Goihl A, Kohli S, Gadi I, Pierau M, Shahzad K, Gupta D, Bock F, Wang HJ, Shaikh H, et al. Activated protein C protects from GvHD via PAR2/PAR3 signalling in regulatory T-cells. Nat Commun. 2017;8(1):311. doi: 10.1038/s41467-017-00169-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]35. Madhusudhan T, Wang H, Straub BK, Grone E, Zhou Q, Shahzad K, Muller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, et al. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood. 2012;119:874–883. doi: 10.1182/blood-2011-07-365973. [PMC free article] [PubMed] [CrossRef] [Google Scholar]36. Riewald M, Kravchenko VV, Petrovan RJ, O'Brien PJ, Brass LF, Ulevitch RJ, Ruf W. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood. 2001;97:3109–3116. doi: 10.1182/blood.V97.10.3109. [PubMed] [CrossRef] [Google Scholar]37. Guo H, Liu D, Gelbard H, Cheng T, Insalaco R, Fernandez JA, Griffin JH, Zlokovic BV. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron. 2004;41:563–572. doi: 10.1016/S0896-6273(04)00019-4. [PubMed] [CrossRef] [Google Scholar]38. Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost. 2010;8:379–388. doi: 10.1111/j.1538-7836.2009.03682.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]39. Stavenuiter F, Mosnier LO. Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood. 2014;124:3480–3489. doi: 10.1182/blood-2014-06-582775. [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem. 2000;275:6580–6585. doi: 10.1074/jbc.275.9.6580. [PubMed] [CrossRef] [Google Scholar]41. Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J. Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res. 2006;66:307–314. doi: 10.1158/0008-5472.CAN-05-1735. [PubMed] [CrossRef] [Google Scholar]42. Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Ostergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood. 2018;131:674–685. doi: 10.1182/blood-2017-02-768218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]43. Rothmeier AS, Disse J, Mueller BM, Liu EB, Ostergaard H, Ruf W. Proangiogenic TF-FVIIa-PAR2 signaling requires Matriptase-independent integrin interaction. Blood. 2016;128:3756.44. Le Gall SM, Szabo R, Lee M, Kirchhofer D, Craik CS, Bugge TH, Camerer E. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood. 2016;127:3260–3269. doi: 10.1182/blood-2015-11-683110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]45. Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, Pendurthi UR, Rao LV. Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood. 2011;117:3199–3208. doi: 10.1182/blood-2010-09-310706. [PMC free article] [PubMed] [CrossRef] [Google Scholar]46. Kondreddy V, Wang J, Keshava S, Esmon CT, Rao LVM, Pendurthi UR. Factor VIIa induces anti-inflammatory signaling via EPCR and PAR1. Blood. 2018;131:2379–2392. doi: 10.1182/blood-2017-10-813527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]47. Riewald M, Ruf W. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci U S A. 2001;98:7742–7747. doi: 10.1073/pnas.141126698. [PMC free article] [PubMed] [CrossRef] [Google Scholar]48. Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci. 1986;31:314–321. doi: 10.1007/BF01318124. [PubMed] [CrossRef] [Google Scholar]49. Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, Miyazaki K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol. 1998;153:937–944. doi: 10.1016/S0002-9440(10)65635-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Koivunen E, Huhtala ML, Stenman UH. Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J Biol Chem. 1989;264:14095–14099. [PubMed] [Google Scholar]51. Koivunen E, Ristimaki A, Itkonen O, Osman S, Vuento M, Stenman UH. Tumor-associated trypsin participates in cancer cell-mediated degradation of extracellular matrix. Cancer Res. 1991;51:2107–2112. [PubMed] [Google Scholar]52. Koshikawa N, Nagashima Y, Miyagi Y, Mizushima H, Yanoma S, Yasumitsu H, Miyazaki K. Expression of trypsin in vascular endothelial cells. FEBS Lett. 1997;409:442–448. doi: 10.1016/S0014-5793(97)00565-6. [PubMed] [CrossRef] [Google Scholar]53. Nakayama T, Hirano K, Shintani Y, Nishimura J, Nakatsuka A, Kuga H, Takahashi S, Kanaide H. Unproductive cleavage and the inactivation of protease-activated receptor-1 by trypsin in vascular endothelial cells. Br J Pharmacol. 2003;138:121–130. doi: 10.1038/sj.bjp.0705008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]54. Molino M, Woolkalis MJ, Reavey-Cantwell J, Pratico D, Andrade-Gordon P, Barnathan ES, Brass LF. Endothelial cell thrombin receptors and PAR-2. Two protease-activated receptors located in a single cellular environment. J Biol Chem. 1997;272:11133–11141. doi: 10.1074/jbc.272.17.11133. [PubMed] [CrossRef] [Google Scholar]55. Berger P, Tunon-De-Lara JM, Savineau JP, Marthan R. Selected contribution: tryptase-induced PAR-2-mediated Ca(2+) signaling in human airway smooth muscle cells. J Appl Physiol (1985) 2001;91:995–1003. doi: 10.1152/jappl.2001.91.2.995. [PubMed] [CrossRef] [Google Scholar]56. Berger P, Perng DW, Thabrew H, Compton SJ, Cairns JA, McEuen AR, Marthan R, Tunon De Lara JM, Walls AF. Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. J Appl Physiol (1985) 2001;91:1372–1379. doi: 10.1152/jappl.2001.91.3.1372. [PubMed] [CrossRef] [Google Scholar]57. Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, McAnulty RJ. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol. 2000;278:L193–L201. doi: 10.1152/ajplung.2000.278.1.L193. [PubMed] [CrossRef] [Google Scholar]58. Compton SJ, Renaux B, Wijesuriya SJ, Hollenberg MD. Glycosylation and the activation of proteinase-activated receptor 2 (PAR(2)) by human mast cell tryptase. Br J Pharmacol. 2001;134:705–718. doi: 10.1038/sj.bjp.0704303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]59. Schechter NM, Brass LF, Lavker RM, Jensen PJ. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol. 1998;176:365–373. doi: 10.1002/(SICI)1097-4652(199808)176:2<365::AID-JCP15>3.0.CO;2-2. [PubMed] [CrossRef] [Google Scholar]60. Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schomig A, Ott I. Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:769–775. doi: 10.1161/01.ATV.0000258862.61067.14. [PubMed] [CrossRef] [Google Scholar]61. Bocheva G, Rattenholl A, Kempkes C, Goerge T, Lin CY, D'Andrea MR, Stander S, Steinhoff M. Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol. 2009;129:1816–1823. doi: 10.1038/jid.2008.449. [PubMed] [CrossRef] [Google Scholar]62. Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I, Darragh MR, Hussain A, Zheng YW, Srinivasan Y, et al. Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell. 2010;18:25–38. doi: 10.1016/j.devcel.2009.11.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]63. Sales KU, Friis S, Konkel JE, Godiksen S, Hatakeyama M, Hansen KK, Rogatto SR, Szabo R, Vogel LK, Chen W, et al. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene. 2015;34:346–356. doi: 10.1038/onc.2013.563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]64. Caliendo G, Santagada V, Perissutti E, Severino B, Fiorino F, Frecentese F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem. 2012;55:6669–6686. doi: 10.1021/jm300407t. [PubMed] [CrossRef] [Google Scholar]65. Ramsay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA, Hooper JD. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J Biol Chem. 2008;283:12293–12304. doi: 10.1074/jbc.M709493200. [PubMed] [CrossRef] [Google Scholar]66. Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M, Blaber SI, Scarisbrick I, Diamandis EP, Hollenberg MD. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs) Biol Chem. 2006;387:817–824. [PubMed] [Google Scholar]67. Yoon H, Radulovic M, Wu J, Blaber SI, Blaber M, Fehlings MG, Scarisbrick IA. Kallikrein 6 signals through PAR1 and PAR2 to promote neuron injury and exacerbate glutamate neurotoxicity. J Neurochem. 2013;127:283–298. doi: 10.1111/jnc.12293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]68. Molino M, Blanchard N, Belmonte E, Tarver AP, Abrams C, Hoxie JA, Cerletti C, Brass LF. Proteolysis of the human platelet and endothelial-cell thrombin receptor by neutrophil-derived Cathepsin-G. J Biol Chem. 1995;270:11168–11175. doi: 10.1074/jbc.270.19.11168. [PubMed] [CrossRef] [Google Scholar]69. Molino M, Blanchard N, Belmonte E, Tarver AP, Abrams C, Hoxie JA, Cerletti C, Brass LF. Cathepsin-G cleaves the human thrombin receptor. Thromb Haemost. 1995;73:923. [Google Scholar]70. Wilson TJ, Nannuru KC, Singh RK. Cathepsin G recruits osteoclast precursors via proteolytic activation of protease-activated Receptor-1. Cancer Res. 2009;69:3188–3195. doi: 10.1158/0008-5472.CAN-08-1956. [PubMed] [CrossRef] [Google Scholar]71. Ramachandran R, Sadofsky LR, Xiao YP, Botham A, Cowen M, Morice AH, Compton SJ. Inflammatory mediators modulate thrombin and cathepsin-G signaling in human bronchial fibroblasts by inducing expression of proteinase-activated receptor-4. Am J Phys Lung Cell Mol Phys. 2007;292:L788–L798. [PubMed] [Google Scholar]72. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2) J Biol Chem. 2011;286:24638–24648. doi: 10.1074/jbc.M110.201988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]73. Cumashi A, Ansuini H, Celli N, De Blasi A, O'Brien PJ, Brass LF, Molino M. Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets. Thromb Haemost. 2001;85:533–538. doi: 10.1055/s-0037-1615617. [PubMed] [CrossRef] [Google Scholar]74. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000;275:6819–6823. doi: 10.1074/jbc.275.10.6819. [PubMed] [CrossRef] [Google Scholar]75. Vergnolle N, Derian CK, D'Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol. 2002;169:1467–1473. doi: 10.4049/jimmunol.169.3.1467. [PubMed] [CrossRef] [Google Scholar]76. Walsh SW, Nugent WH, Solotskaya AV, Anderson CD, Grider JR, Strauss JF 3rd. Matrix metalloprotease-1 and elastase are novel uterotonic agents acting through protease-activated receptor 1. Reprod Sci. 2017. 10.1177/1933719117732162. [PMC free article] [PubMed]77. Kumar VRS, Darisipudi MN, Steiger S, Devarapu SK, Tato M, Kukarni OP, Mulay SR, Thomasova D, Popper B, Demleitner J, et al. Cathepsin S cleavage of protease-activated Receptor-2 on endothelial cells promotes microvascular diabetes complications. J Am Soc Nephrol. 2016;27:1635–1649. doi: 10.1681/ASN.2015020208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]78. Elmariah SB, Reddy VB, Lerner EA. Cathepsin S signals via PAR2 and generates a novel tethered ligand receptor agonist. PLoS One. 2014;9(6):e99702. doi: 10.1371/journal.pone.0099702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]79. Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry. 1999;38:4572–4585. doi: 10.1021/bi9824792. [PubMed] [CrossRef] [Google Scholar]80. Domotor E, Bartha K, Machovich R, Adam-Vizi V. Protease-activated receptor-2 (PAR-2) in brain microvascular endothelium and its regulation by plasmin and elastase. J Neurochem. 2002;80:746–754. doi: 10.1046/j.0022-3042.2002.00759.x. [PubMed] [CrossRef] [Google Scholar]81. Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA, Nath A. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One. 2012;7:e43950. doi: 10.1371/journal.pone.0043950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]82. Lee PR, Johnson TP, Gnanapavan S, Giovannoni G, Wang T, Steiner JP, Medynets M, Vaal MJ, Gartner V, Nath A. Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1beta. J Neuroinflammation. 2017;14:131. doi: 10.1186/s12974-017-0901-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]83. Cooper DM, Pechkovsky DV, Hackett TL, Knight DA, Granville DJ. Granzyme K activates protease-activated receptor-1. PLoS One. 2011;6:e21484. doi: 10.1371/journal.pone.0021484. [PMC free article] [PubMed] [CrossRef] [Google Scholar]84. Sharma M, Merkulova Y, Raithatha S, Parkinson LG, Shen Y, Cooper D, Granville DJ. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FEBS J. 2016;283:1734–1747. doi: 10.1111/febs.13699. [PubMed] [CrossRef] [Google Scholar]85. Alvarez-Arce A, Lee-Rivera I, Lopez E, Hernandez-Cruz A, Lopez-Colome AM. Thrombin-induced Calpain activation promotes protease-activated receptor 1 internalization. Int J Cell Biol. 2017;2017:1908310. doi: 10.1155/2017/1908310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]86. Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O'Callaghan K, Covic L, Kuliopulos A. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell. 2009;137:332–343. doi: 10.1016/j.cell.2009.02.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]87. Austin KM, Covic L, Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood. 2013;121:431–439. doi: 10.1182/blood-2012-09-355958. [PMC free article] [PubMed] [CrossRef] [Google Scholar]88. Austin KM, Nguyen N, Javid G, Covic L, Kuliopulos A. Noncanonical matrix metalloprotease-1-protease-activated receptor-1 signaling triggers vascular smooth muscle cell dedifferentiation and arterial stenosis. J Biol Chem. 2013;288:23105–23115. doi: 10.1074/jbc.M113.467019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]89. Allen M, Ghosh S, Ahern GP, Villapol S, Maguire-Zeiss KA, Conant K. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1. Sci Rep. 2016;6:35497. doi: 10.1038/srep35497. [PMC free article] [PubMed] [CrossRef] [Google Scholar]90. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120:303–313. doi: 10.1016/j.cell.2004.12.018. [PubMed] [CrossRef] [Google Scholar]91. Sebastiano M, Momi S, Falcinelli E, Bury L, Hoylaerts MF, Gresele P. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood. 2017;129:883–895. doi: 10.1182/blood-2016-06-724245. [PubMed] [CrossRef] [Google Scholar]92. Lee SE, Kim JM, Jeong SK, Jeon JE, Yoon HJ, Jeong MK, Lee SH. Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes. Arch Dermatol Res. 2010;302:745–756. doi: 10.1007/s00403-010-1074-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]93. Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace JL, Befus AD, Moqbel R. Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol. 2000;106:537–545. doi: 10.1067/mai.2000.109058. [PubMed] [CrossRef] [Google Scholar]94. Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease activated receptor (PAR)-1, upregulates placenta growth factor and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2018;315(3):L432–L442. doi: 10.1152/ajplung.00216.2017. [PubMed] [CrossRef] [Google Scholar]95. Raza SL, Nehring LC, Shapiro SD, Cornelius LA. Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J Biol Chem. 2000;275:41243–41250. doi: 10.1074/jbc.M005788200. [PubMed] [CrossRef] [Google Scholar]96. Zang N, Zhuang JG, Deng Y, Yang ZM, Ye ZX, Xie XH, Ren L, Fu Z, Luo ZX, Xu FD, Liu EM. Pulmonary C fibers modulate MMP-12 production via PAR2 and are involved in the long-term airway inflammation and airway Hyperresponsiveness induced by respiratory syncytial virus infection. J Virol. 2016;90:2536–2543. doi: 10.1128/JVI.02534-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]97. Hooper JD, Nicol DL, Dickinson JL, Eyre HJ, Scarman AL, Normyle JF, Stuttgen MA, Douglas ML, Loveland KA, Sutherland GR, Antalis TM. Testisin, a new human serine proteinase expressed by premeiotic testicular germ cells and lost in testicular germ cell tumors. Cancer Res. 1999;59:3199–3205. [PubMed] [Google Scholar]98. Driesbaugh KH, Buzza MS, Martin EW, Conway GD, Kao JP, Antalis TM. Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin. J Biol Chem. 2015;290:3529–3541. doi: 10.1074/jbc.M114.628560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]99. Potempa J, Pike RN. Corruption of innate immunity by bacterial proteases. J Innate Immun. 2009;1:70–87. doi: 10.1159/000181144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]100. Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol. 2008;10:1491–1504. doi: 10.1111/j.1462-5822.2008.01142.x. [PubMed] [CrossRef] [Google Scholar]101. Dulon S, Leduc D, Cottrell GS, D'Alayer J, Hansen KK, Bunnett NW, Hollenberg MD, Pidard D, Chignard M. Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am J Respir Cell Mol Biol. 2005;32:411–419. doi: 10.1165/rcmb.2004-0274OC. [PubMed] [CrossRef] [Google Scholar]102. Ender M, Andreoni F, Zinkernagel AS, Schuepbach RA. Streptococcal SpeB cleaved PAR-1 suppresses ERK phosphorylation and blunts thrombin-induced platelet aggregation. PLoS One. 2013;8:e81298. doi: 10.1371/journal.pone.0081298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]103. van den Boogaard FE, Brands X, Duitman J, de Stoppelaar SF, Borensztajn KS, Roelofs J, Hollenberg MD, Spek CA, Schultz MJ, van ‘t Veer C, van der Poll T. Protease-activated receptor 2 facilitates bacterial dissemination in pneumococcal pneumonia. J Infect Dis. 2018;217:1462–1471. doi: 10.1093/infdis/jiy010. [PubMed] [CrossRef] [Google Scholar]104. Schouten M, Van't Veer C, Roelofs JJ, Levi M, van der Poll T. Protease-activated receptor-1 impairs host defense in murine pneumococcal pneumonia: a controlled laboratory study. Crit Care. 2012;16:R238. doi: 10.1186/cc11910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]105. Asehnoune K, Moine P. Protease-activated receptor-1: key player in the sepsis coagulation-inflammation crosstalk. Crit Care. 2013;17:119. doi: 10.1186/cc12502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]106. de Stoppelaar SF, Van't Veer C, van den Boogaard FE, Nieuwland R, Hoogendijk AJ, de Boer OJ, Roelofs JJ, van der Poll T. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thromb Haemost. 2013;110:582–592. doi: 10.1160/TH13-01-0052. [PubMed] [CrossRef] [Google Scholar]107. Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M, Andrade-Gordon P, Vergnolle N. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am J Pathol. 2006;168:1189–1199. doi: 10.2353/ajpath.2006.050658. [PMC free article] [PubMed] [CrossRef] [Google Scholar]108. Francis N, Ayodele BA, O'Brien-Simpson NM, Birchmeier W, Pike RN, Pagel CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor-2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol. 2018;20(11):e12891. doi: 10.1111/cmi.12891. [PubMed] [CrossRef] [Google Scholar]109. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ, Pike RN. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett. 1998;435:45–48. doi: 10.1016/S0014-5793(98)01036-9. [PubMed] [CrossRef] [Google Scholar]110. Lourbakos A, Potempa J, Travis J, D'Andrea MR, Andrade-Gordon P, Santulli R, Mackie EJ, Pike RN. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun. 2001;69:5121–5130. doi: 10.1128/IAI.69.8.5121-5130.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]111. Lourbakos A, Yuan YP, Jenkins AL, Travis J, Andrade-Gordon P, Santulli R, Potempa J, Pike RN. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood. 2001;97:3790–3797. doi: 10.1182/blood.V97.12.3790. [PubMed] [CrossRef] [Google Scholar]112. Papapanagiotou D, Nicu EA, Bizzarro S, Gerdes VE, Meijers JC, Nieuwland R, van der Velden U, Loos BG. Periodontitis is associated with platelet activation. Atherosclerosis. 2009;202:605–611. doi: 10.1016/j.atherosclerosis.2008.05.035. [PubMed] [CrossRef] [Google Scholar]113. Ikawa K, Nishioka T, Yu Z, Sugawara Y, Kawagoe J, Takizawa T, Primo V, Nikolic B, Kuroishi T, Sasano T, et al. Involvement of neutrophil recruitment and protease-activated receptor 2 activation in the induction of IL-18 in mice. J Leukoc Biol. 2005;78:1118–1126. doi: 10.1189/jlb.0305151. [PubMed] [CrossRef] [Google Scholar]114. Kida Y, Inoue H, Shimizu T, Kuwano K. Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun. 2007;75:164–174. doi: 10.1128/IAI.01239-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]115. Chen X, Earley K, Luo W, Lin SH, Schilling WP. Functional expression of a human thrombin receptor in Sf9 insect cells: evidence for an active tethered ligand. Biochem J. 1996;314(Pt 2):603–611. doi: 10.1042/bj3140603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]116. Ubl JJ, Sergeeva M, Reiser G. Desensitisation of protease-activated receptor-1 (PAR-1) in rat astrocytes: evidence for a novel mechanism for terminating Ca2+ signalling evoked by the tethered ligand. J Physiol. 2000;525(Pt 2):319–330. doi: 10.1111/j.1469-7793.2000.00319.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]117. Tripathi T, Abdi M, Alizadeh H. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2014;55:3912–3921. doi: 10.1167/iovs.14-14486. [PMC free article] [PubMed] [CrossRef] [Google Scholar]118. Laing GD, Compton SJ, Ramachandran R, Fuller GL, Wilkinson MC, Wagstaff SC, Watson SP, Kamiguti AS, Theakston RD, Senis YA. Characterization of a novel protein from Proatheris superciliaris venom: proatherocytin, a 34-kDa platelet receptor PAR1 agonist. Toxicon. 2005;46:490–499. doi: 10.1016/j.toxicon.2005.06.011. [PubMed] [CrossRef] [Google Scholar]119. Santos BF, Serrano SM, Kuliopulos A, Niewiarowski S. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett. 2000;477:199–202. doi: 10.1016/S0014-5793(00)01803-2. [PubMed] [CrossRef] [Google Scholar]120. Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol. 2001;167:1014–1021. doi: 10.4049/jimmunol.167.2.1014. [PubMed] [CrossRef] [Google Scholar]121. Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ, Stewart GA. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol. 2002;168:3577–3585. doi: 10.4049/jimmunol.168.7.3577. [PubMed] [CrossRef] [Google Scholar]122. Lin YP, Nelson C, Kramer H, Parekh AB. The allergen Der p3 from house dust mite stimulates store-operated ca(2+) channels and mast cell migration through PAR4 receptors. Mol Cell. 2018;70:228–241.e225. doi: 10.1016/j.molcel.2018.03.025. [PubMed] [CrossRef] [Google Scholar]123. Kondo S, Helin H, Shichijo M, Bacon KB. Cockroach allergen extract stimulates protease-activated receptor-2 (PAR-2) expressed in mouse lung fibroblast. Inflamm Res. 2004;53:489–496. doi: 10.1007/s00011-004-1287-8. [PubMed] [CrossRef] [Google Scholar]124. Asaduzzaman M, Nadeem A, Arizmendi N, Davidson C, Nichols HL, Abel M, Ionescu LI, Puttagunta L, Thebaud B, Gordon J, et al. Functional inhibition of PAR2 alleviates allergen-induced airway hyperresponsiveness and inflammation. Clin Exp Allergy. 2015;45:1844–1855. doi: 10.1111/cea.12628. [PubMed] [CrossRef] [Google Scholar]125. Polley DJ, Mihara K, Ramachandran R, Vliagoftis H, Renaux B, Saifeddine M, Daines MO, Boitano S, Hollenberg MD. Cockroach allergen serine proteinases: isolation, sequencing and signalling via proteinase-activated receptor-2. Clin Exp Allergy. 2017;47:946–960. doi: 10.1111/cea.12921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]126. Chiu LL, Perng DW, Yu CH, Su SN, Chow LP. Mold allergen, pen C 13, induces IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J Immunol. 2007;178:5237–5244. doi: 10.4049/jimmunol.178.8.5237. [PubMed] [CrossRef] [Google Scholar]127. Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol. 2000;105:1185–1193. doi: 10.1067/mai.2000.106210. [PubMed] [CrossRef] [Google Scholar]128. Boitano S, Flynn AN, Schulz SM, Hoffman J, Price TJ, Vagner J. Potent agonists of the protease activated receptor 2 (PAR2) J Med Chem. 2011;54:1308–1313. doi: 10.1021/jm1013049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]129. Boitano S, Flynn AN, Sherwood CL, Schulz SM, Hoffman J, Gruzinova I, Daines MO. Alternaria alternata serine proteases induce lung inflammation and airway epithelial cell activation via PAR2. Am J Physiol Lung Cell Mol Physiol. 2011;300:L605–L614. doi: 10.1152/ajplung.00359.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]130. Snelgrove RJ, Gregory LG, Peiro T, Akthar S, Campbell GA, Walker SA, Lloyd CM. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J Allergy Clin Immunol. 2014;134:583–592.e586. doi: 10.1016/j.jaci.2014.02.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]131. Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep. 2016;5:283–288. doi: 10.3892/br.2016.720. [PMC free article] [PubMed] [CrossRef] [Google Scholar]132. Borrelli F, Capasso R, Severino B, Fiorino F, Aviello G, De Rosa G, Mazzella M, Romano B, Capasso F, Fasolino I, Izzo AA. Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice. Neurogastroenterol Motil. 2011;23:745–e331. doi: 10.1111/j.1365-2982.2011.01735.x. [PubMed] [CrossRef] [Google Scholar]133. Reddy VB, Lerner EA. Plant cysteine proteases that evoke itch activate protease-activated receptors. Br J Dermatol. 2010;163:532–535. doi: 10.1111/j.1365-2133.2010.09862.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]134. Lerner DJ, Chen M, Tram T, Coughlin SR. Agonist recognition by proteinase-activated receptor 2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J Biol Chem. 1996;271:13943–13947. doi: 10.1074/jbc.271.24.13943. [PubMed] [CrossRef] [Google Scholar]135. Hollenberg MD, Yang SG, Laniyonu AA, Moore GJ, Saifeddine M. Action of thrombin receptor polypeptide in gastric smooth muscle: identification of a core pentapeptide retaining full thrombin-mimetic intrinsic activity. Mol Pharmacol. 1992;42:186–191. [PubMed] [Google Scholar]136. Blackhart BD, Emilsson K, Nguyen D, Teng W, Martelli AJ, Nystedt S, Sundelin J, Scarborough RM. Ligand cross-reactivity within the protease-activated receptor family. J Biol Chem. 1996;271:16466–16471. doi: 10.1074/jbc.271.28.16466. [PubMed] [CrossRef] [Google Scholar]137. Hollenberg MD, Saifeddine M, al-Ani B, Kawabata A. Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can J Physiol Pharmacol. 1997;75:832–841. doi: 10.1139/y97-110. [PubMed] [CrossRef] [Google Scholar]138. Vassallo RR, Jr, Kieber-Emmons T, Cichowski K, Brass LF. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem. 1992;267:6081–6085. [PubMed] [Google Scholar]139. al-Ani B, Saifeddine M, Hollenberg MD. Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can J Physiol Pharmacol. 1995;73:1203–1207. doi: 10.1139/y95-172. [PubMed] [CrossRef] [Google Scholar]140. McGuire JJ, Saifeddine M, Triggle CR, Sun K, Hollenberg MD. 2-furoyl-LIGRLO-amide: a potent and selective proteinase-activated receptor 2 agonist. J Pharmacol Exp Ther. 2004;309:1124–1131. doi: 10.1124/jpet.103.064584. [PubMed] [CrossRef] [Google Scholar]141. Al-Ani B, Saifeddine M, Kawabata A, Hollenberg MD. Proteinase activated receptor 2: role of extracellular loop 2 for ligand-mediated activation. Br J Pharmacol. 1999;128:1105–1113. doi: 10.1038/sj.bjp.0702834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]142. Al-Ani B, Saifeddine M, Kawabata A, Renaux B, Mokashi S, Hollenberg MD. Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands. J Pharmacol Exp Ther. 1999;290:753–760. [PubMed] [Google Scholar]143. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature. 2000;404:609–613. doi: 10.1038/35007085. [PubMed] [CrossRef] [Google Scholar]144. Hollenberg MD, Saifeddine M, Al-Ani B, Gui Y. Proteinase-activated receptor 4 (PAR4): action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Can J Physiol Pharmacol. 1999;77:458–464. doi: 10.1139/y99-090. [PubMed] [CrossRef] [Google Scholar]145. Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function [In process citation] J Biol Chem. 2000;275:19728–19734. doi: 10.1074/jbc.M909960199. [PubMed] [CrossRef] [Google Scholar]146. Lin H, Trejo J. Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits beta-arrestin-mediated endosomal signaling. J Biol Chem. 2013;288:11203–11215. doi: 10.1074/jbc.M112.439950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]147. O'Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS, Brass LF. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem. 2000;275:13502–13509. doi: 10.1074/jbc.275.18.13502. [PubMed] [CrossRef] [Google Scholar]148. Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res. 2004;2:395–402. [PubMed] [Google Scholar]149. Jaber M, Maoz M, Kancharla A, Agranovich D, Peretz T, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cell Mol Life Sci. 2014;71:2517–2533. doi: 10.1007/s00018-013-1498-7. [PubMed] [CrossRef] [Google Scholar]150. Leger AJ, Jacques SL, Badar J, Kaneider NC, Derian CK, Andrade-Gordon P, Covic L, Kuliopulos A. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation. 2006;113:1244–1254. doi: 10.1161/CIRCULATIONAHA.105.587758. [PubMed] [CrossRef] [Google Scholar]151. Sveshnikova AN, Balatskiy AV, Demianova AS, Shepelyuk TO, Shakhidzhanov SS, Balatskaya MN, Pichugin AV, Ataullakhanov FI, Panteleev MA. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost. 2016;14:2045–2057. doi: 10.1111/jth.13442. [PubMed] [CrossRef] [Google Scholar]152. Hansen KK, Saifeddine M, Hollenberg MD. Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology. 2004;112:183–190. doi: 10.1111/j.1365-2567.2004.01870.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]153. Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson M, Gould GW, Mundell S, Milligan G, Plevin R. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4) J Biol Chem. 2012;287:16656–16669. doi: 10.1074/jbc.M111.315911. [PMC free article] [PubMed] [CrossRef] [Google Scholar]154. Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal. 2013;11:86. doi: 10.1186/1478-811X-11-86. [PMC free article] [PubMed] [CrossRef] [Google Scholar]155. Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett NW. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol. 2006;575:555–571. doi: 10.1113/jphysiol.2006.111534. [PMC free article] [PubMed] [CrossRef] [Google Scholar]156. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. 2007;578:715–733. doi: 10.1113/jphysiol.2006.121111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]157. Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, Liedtke W, Jimenez-Vargas NN, Vanner SJ, Bunnett NW. Neutrophil elastase activates protease-activated Receptor-2 (PAR2) and transient receptor potential Vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem. 2015;290:13875–13887. doi: 10.1074/jbc.M115.642736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]158. Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, Hollenberg MD, Ramachandran R. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br J Pharmacol. 2015;172:2493–2506. doi: 10.1111/bph.13072. [PMC free article] [PubMed] [CrossRef] [Google Scholar]159. Tsubota M, Ozaki T, Hayashi Y, Okawa Y, Fujimura A, Sekiguchi F, Nishikawa H, Kawabata A. Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: involvement of TRPV1 and T-type ca(2+) channels. J Pharmacol Sci. 2018;136:46–49. doi: 10.1016/j.jphs.2017.12.007. [PubMed] [CrossRef] [Google Scholar]160. Chung H, Ramachandran R, Hollenberg MD, Muruve DA. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-beta receptor signaling pathways contributes to renal fibrosis. J Biol Chem. 2013;288:37319–37331. doi: 10.1074/jbc.M113.492793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]161. Sabri A, Guo J, Elouardighi H, Darrow AL, Andrade-Gordon P, Steinberg SF. Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. J Biol Chem. 2003;278:11714–11720. doi: 10.1074/jbc.M213091200. [PubMed] [CrossRef] [Google Scholar]162. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25–33. doi: 10.1111/j.1749-6632.2012.06538.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]163. Al-Ani B, Hewett PW, Cudmore MJ, Fujisawa T, Saifeddine M, Williams H, Ramma W, Sissaoui S, Jayaraman PS, Ohba M, et al. Activation of proteinase-activated receptor 2 stimulates soluble vascular endothelial growth factor receptor 1 release via epidermal growth factor receptor transactivation in endothelial cells. Hypertension. 2010;55:689–697. doi: 10.1161/HYPERTENSIONAHA.109.136333. [PubMed] [CrossRef] [Google Scholar]164. Palm E, Demirel I, Bengtsson T, Khalaf H. The role of toll-like and protease-activated receptors in the expression of cytokines by gingival fibroblasts stimulated with the periodontal pathogen Porphyromonas gingivalis. Cytokine. 2015;76:424–432. doi: 10.1016/j.cyto.2015.08.263. [PubMed] [CrossRef] [Google Scholar]165. Damien P, Cognasse F, Payrastre B, Spinelli SL, Blumberg N, Arthaud CA, Eyraud MA, Phipps RP, McNicol A, Pozzetto B, et al. NF-kappaB links TLR2 and PAR1 to soluble Immunomodulator factor secretion in human platelets. Front Immunol. 2017;8:85. doi: 10.3389/fimmu.2017.00085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]166. Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem. 2008;283:24314–24325. doi: 10.1074/jbc.M804800200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]167. Nhu QM, Shirey K, Teijaro JR, Farber DL, Netzel-Arnett S, Antalis TM, Fasano A, Vogel SN. Novel signaling interactions between proteinase-activated receptor 2 and toll-like receptors in vitro and in vivo. Mucosal Immunol. 2010;3:29–39. doi: 10.1038/mi.2009.120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]168. Williams JC, Lee RD, Doerschuk CM, Mackman N. Effect of PAR-2 deficiency in mice on KC expression after Intratracheal LPS administration. J Signal Transduct. 2011;2011:415195. doi: 10.1155/2011/415195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]169. Zhou B, Zhou H, Ling S, Guo D, Yan Y, Zhou F, Wu Y. Activation of PAR2 or/and TLR4 promotes SW620 cell proliferation and migration via phosphorylation of ERK1/2. Oncol Rep. 2011;25:503–511. doi: 10.3892/or.2010.1077. [PubMed] [CrossRef] [Google Scholar]170. Bucci M, Vellecco V, Harrington L, Brancaleone V, Roviezzo F, Mattace Raso G, Ianaro A, Lungarella G, De Palma R, Meli R, Cirino G. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2) ) is involved in vascular function. Br J Pharmacol. 2013;168:411–420. doi: 10.1111/j.1476-5381.2012.02205.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]171. Weithauser A, Bobbert P, Antoniak S, Bohm A, Rauch BH, Klingel K, Savvatis K, Kroemer HK, Tschope C, Stroux A, et al. Protease-activated receptor-2 regulates the innate immune response to viral infection in a coxsackievirus B3-induced myocarditis. J Am Coll Cardiol. 2013;62:1737–1745. doi: 10.1016/j.jacc.2013.05.076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]172. Oldham WM, Hamm HE. How do receptors activate G proteins? Adv Protein Chem. 2007;74:67–93. doi: 10.1016/S0065-3233(07)74002-0. [PubMed] [CrossRef] [Google Scholar]173. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9:60–71. doi: 10.1038/nrm2299. [PubMed] [CrossRef] [Google Scholar]174. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105:3178–3184. doi: 10.1182/blood-2004-10-3985. [PubMed] [CrossRef] [Google Scholar]175. Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM, Ye SQ, Garcia JG. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280:17286–17293. doi: 10.1074/jbc.M412427200. [PubMed] [CrossRef] [Google Scholar]176. Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood. 2012;120:5237–5246. doi: 10.1182/blood-2012-08-452169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]177. Hung DT, Wong YH, Vu TK, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem. 1992;267:20831–20834. [PubMed] [Google Scholar]178. Hung DT, Vu TK, Wheaton VI, Ishii K, Coughlin SR. Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J Clin Invest. 1992;89:1350–1353. doi: 10.1172/JCI115721. [PMC free article] [PubMed] [CrossRef] [Google Scholar]179. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, Scarborough RM, Andrade-Gordon P. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A. 1995;92:9151–9155. doi: 10.1073/pnas.92.20.9151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]180. McLaughlin JN, Shen L, Holinstat M, Brooks JD, Dibenedetto E, Hamm HE. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem. 2005;280:25048–25059. doi: 10.1074/jbc.M414090200. [PubMed] [CrossRef] [Google Scholar]181. Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A. 1994;91:504–508. doi: 10.1073/pnas.91.2.504. [PMC free article] [PubMed] [CrossRef] [Google Scholar]182. Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and rho/rho-kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol. 1999;144:745–754. doi: 10.1083/jcb.144.4.745. [PMC free article] [PubMed] [CrossRef] [Google Scholar]183. Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S, Konrad I, Schulte V, Aktas B, Gratacap MP, Simon MI, et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med. 2003;9:1418–1422. doi: 10.1038/nm943. [PubMed] [CrossRef] [Google Scholar]184. Klarenbach SW, Chipiuk A, Nelson RC, Hollenberg MD, Murray AG. Differential actions of PAR2 and PAR1 in stimulating human endothelial cell exocytosis and permeability: the role of Rho-GTPases. Circ Res. 2003;92:272–278. doi: 10.1161/01.RES.0000057386.15390.A3. [PubMed] [CrossRef] [Google Scholar]185. Fortunato TM, Vara DS, Wheeler-Jones CP, Pula G. Expression of protease-activated receptor 1 and 2 and anti-tubulogenic activity of protease-activated receptor 1 in human endothelial colony-forming cells. PLoS One. 2014;9:e109375. doi: 10.1371/journal.pone.0109375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]186. Kim YV, Di Cello F, Hillaire CS, Kim KS. Differential Ca2+ signaling by thrombin and protease-activated receptor-1-activating peptide in human brain microvascular endothelial cells. Am J Physiol Cell Physiol. 2004;286:C31–C42. doi: 10.1152/ajpcell.00157.2003. [PubMed] [CrossRef] [Google Scholar]187. Soh UJ, Trejo J. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through beta-arrestin and dishevelled-2 scaffolds. Proc Natl Acad Sci U S A. 2011;108:E1372–E1380. doi: 10.1073/pnas.1112482108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]188. Roy RV, Ardeshirylajimi A, Dinarvand P, Yang L, Rezaie AR. Occupancy of human EPCR by protein C induces beta-arrestin-2 biased PAR1 signaling by both APC and thrombin. Blood. 2016;128:1884–1893. doi: 10.1182/blood-2016-06-720581. [PMC free article] [PubMed] [CrossRef] [Google Scholar]189. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW. Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 2000;148:1267–1281. doi: 10.1083/jcb.148.6.1267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]190. Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem. 2004;279:55419–55424. doi: 10.1074/jbc.M410312200. [PubMed] [CrossRef] [Google Scholar]191. Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR, Trejo J. Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol. 2005;67:78–87. doi: 10.1124/mol.104.006072. [PubMed] [CrossRef] [Google Scholar]192. Hein L, Ishii K, Coughlin SR, Kobilka BK. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem. 1994;269:27719–27726. [PubMed] [Google Scholar]193. Takafuta T, Wu G, Murphy GF, Shapiro SS. Human beta-filamin is a new protein that interacts with the cytoplasmic tail of glycoprotein Ibalpha. J Biol Chem. 1998;273:17531–17538. doi: 10.1074/jbc.273.28.17531. [PubMed] [CrossRef] [Google Scholar]194. Vouret-Craviari V, Grall D, Chambard JC, Rasmussen UB, Pouyssegur J, Van Obberghen-Schilling E. Post-translational and activation-dependent modifications of the G protein-coupled thrombin receptor. J Biol Chem. 1995;270:8367–8372. doi: 10.1074/jbc.270.14.8367. [PubMed] [CrossRef] [Google Scholar]195. Schuepbach RA, Feistritzer C, Brass LF, Riewald M. Activated protein C-cleaved protease activated receptor-1 is retained on the endothelial cell surface even in the presence of thrombin. Blood. 2008;111:2667–2673. doi: 10.1182/blood-2007-09-113076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]196. Trejo J, Hammes SR, Coughlin SR. Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci U S A. 1998;95:13698–13702. doi: 10.1073/pnas.95.23.13698. [PMC free article] [PubMed] [CrossRef] [Google Scholar]197. Paing MM, Johnston CA, Siderovski DP, Trejo J. Clathrin adaptor AP2 regulates thrombin receptor constitutive internalization and endothelial cell resensitization. Mol Cell Biol. 2006;26:3231–3242. doi: 10.1128/MCB.26.8.3231-3242.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]198. Dores MR, Chen B, Lin H, Soh UJ, Paing MM, Montagne WA, Meerloo T, Trejo J. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. J Cell Biol. 2012;197:407–419. doi: 10.1083/jcb.201110031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]199. Grimsey NJ, Coronel LJ, Cordova IC, Trejo J. Recycling and endosomal sorting of protease-activated Receptor-1 is distinctly regulated by Rab11A and Rab11B proteins. J Biol Chem. 2016;291:2223–2236. doi: 10.1074/jbc.M115.702993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]200. Trejo J, Coughlin SR. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling. J Biol Chem. 1999;274:2216–2224. doi: 10.1074/jbc.274.4.2216. [PubMed] [CrossRef] [Google Scholar]201. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, Coughlin SR. Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. J Biol Chem. 1994;269:1125–1130. [PubMed] [Google Scholar]202. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J. Beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J Biol Chem. 2002;277:1292–1300. doi: 10.1074/jbc.M109160200. [PubMed] [CrossRef] [Google Scholar]203. Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood. 2004;104:1703–1710. doi: 10.1182/blood-2003-10-3428. [PMC free article] [PubMed] [CrossRef] [Google Scholar]204. Wolfe BL, Marchese A, Trejo J. Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J Cell Biol. 2007;177:905–916. doi: 10.1083/jcb.200610154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]205. Soh UJ, Dores MR, Chen B, Trejo J. Signal transduction by protease-activated receptors. Br J Pharmacol. 2010;160:191–203. doi: 10.1111/j.1476-5381.2010.00705.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]206. Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW. c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem. 2005;280:16076–16087. doi: 10.1074/jbc.M500109200. [PubMed] [CrossRef] [Google Scholar]207. Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW. Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. Beta-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem. 1999;274:18524–18535. doi: 10.1074/jbc.274.26.18524. [PubMed] [CrossRef] [Google Scholar]208. Ricks TK, Trejo J. Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem. 2009;284:34444–34457. doi: 10.1074/jbc.M109.048942. [PMC free article] [PubMed] [CrossRef] [Google Scholar]209. Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B, et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci U S A. 2018;115:E7438–E7447. doi: 10.1073/pnas.1721891115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]210. Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev. 2005;26:1–43. doi: 10.1210/er.2003-0025. [PubMed] [CrossRef] [Google Scholar]211. Smith TH, Coronel LJ, Li JG, Dores MR, Nieman MT, Trejo J. Protease-activated receptor-4 signaling and trafficking is regulated by the Clathrin adaptor protein complex-2 independent of beta-Arrestins. J Biol Chem. 2016;291:18453–18464. doi: 10.1074/jbc.M116.729285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]212. Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR. Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem. 2000;275:25216–25221. doi: 10.1074/jbc.M004589200. [PubMed] [CrossRef] [Google Scholar]213. Smith TH, Li JG, Dores MR, Trejo J. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of beta-arrestin. J Biol Chem. 2017;292:13867–13878. doi: 10.1074/jbc.M117.782359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]214. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999;103:879–887. doi: 10.1172/JCI6042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]215. Andrade-Gordon P, Derian CK, Maryanoff BE, Zhang HC, Addo MF, Cheung W, Damiano BP, D'Andrea MR, Darrow AL, de Garavilla L, et al. Administration of a potent antagonist of protease-activated receptor-1 (PAR-1) attenuates vascular restenosis following balloon angioplasty in rats. J Pharmacol Exp Ther. 2001;298:34–42. [PubMed] [Google Scholar]216. Bae JS, Rezaie AR. Thrombin inhibits nuclear factor kappaB and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost. 2009;101:513–520. doi: 10.1160/TH08-09-0568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]217. Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S, Vergnolle N, Vestweber D, Luger TA, Schulze-Osthoff K, Steinhoff M. Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol. 2005;124:38–45. doi: 10.1111/j.0022-202X.2004.23539.x. [PubMed] [CrossRef] [Google Scholar]218. Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, Stone SR. Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci. 1997;110(Pt 7):881–887. [PubMed] [Google Scholar]219. Borbiev T, Birukova A, Liu F, Nurmukhambetova S, Gerthoffer WT, Garcia JG, Verin AD. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–L918. doi: 10.1152/ajplung.00372.2003. [PubMed] [CrossRef] [Google Scholar]220. Schuepbach RA, Feistritzer C, Fernandez JA, Griffin JH, Riewald M. Protection of vascular barrier integrity by activated protein C in murine models depends on protease-activated receptor-1. Thromb Haemost. 2009;101:724–733. doi: 10.1160/TH08-10-0632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]221. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the rho pathway. FASEB J. 2007;21:2776–2786. doi: 10.1096/fj.06-7660com. [PubMed] [CrossRef] [Google Scholar]222. Grimsey NJ, Aguilar B, Smith TH, Le P, Soohoo AL, Puthenveedu MA, Nizet V, Trejo J. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes. J Cell Biol. 2015;210:1117–1131. doi: 10.1083/jcb.201504007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]223. Hamilton JR, Frauman AG, Cocks TM. Increased expression of protease-activated receptor-2 (PAR2) and PAR4 in human coronary artery by inflammatory stimuli unveils endothelium-dependent relaxations to PAR2 and PAR4 agonists. Circ Res. 2001;89:92–98. doi: 10.1161/hh1301.092661. [PubMed] [CrossRef] [Google Scholar]224. Saifeddine M, al-Ani B, Cheng CH, Wang L, Hollenberg MD. Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br J Pharmacol. 1996;118:521–530. doi: 10.1111/j.1476-5381.1996.tb15433.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]225. Moffatt JD, Cocks TM. Endothelium-dependent and -independent responses to protease-activated receptor-2 (PAR-2) activation in mouse isolated renal arteries. Br J Pharmacol. 1998;125:591–594. doi: 10.1038/sj.bjp.0702157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]226. Sobey CG, Moffatt JD, Cocks TM. Evidence for selective effects of chronic hypertension on cerebral artery vasodilatation to protease-activated receptor-2 activation. Stroke. 1999;30:1933–1940. doi: 10.1161/01.STR.30.9.1933. [PubMed] [CrossRef] [Google Scholar]227. McGuire JJ, Hollenberg MD, Andrade-Gordon P, Triggle CR. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles. Br J Pharmacol. 2002;135:155–169. doi: 10.1038/sj.bjp.0704469. [PMC free article] [PubMed] [CrossRef] [Google Scholar]228. Villari A, Giurdanella G, Bucolo C, Drago F, Salomone S. Apixaban enhances vasodilatation mediated by protease-activated receptor 2 in isolated rat arteries. Front Pharmacol. 2017;8:480. doi: 10.3389/fphar.2017.00480. [PMC free article] [PubMed] [CrossRef] [Google Scholar]229. Roy SS, Saifeddine M, Loutzenhiser R, Triggle CR, Hollenberg MD. Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity. Br J Pharmacol. 1998;123:1434–1440. doi: 10.1038/sj.bjp.0701726. [PMC free article] [PubMed] [CrossRef] [Google Scholar]230. Arisato T, Sarker KP, Kawahara K, Nakata M, Hashiguchi T, Osame M, Kitajima I, Maruyama I. The agonist of the protease-activated receptor-1 (PAR) but not PAR3 mimics thrombin-induced vascular endothelial growth factor release in human smooth muscle cells. Cell Mol Life Sci. 2003;60:1716–1724. doi: 10.1007/s00018-003-3140-6. [PubMed] [CrossRef] [Google Scholar]231. Seymour ML, Binion DG, Compton SJ, Hollenberg MD, MacNaughton WK. Expression of proteinase-activated receptor 2 on human primary gastrointestinal myofibroblasts and stimulation of prostaglandin synthesis. Can J Physiol Pharmacol. 2005;83:605–616. doi: 10.1139/y05-046. [PubMed] [CrossRef] [Google Scholar]232. Iablokov V, Hirota CL, Peplowski MA, Ramachandran R, Mihara K, Hollenberg MD, MacNaughton WK. Proteinase-activated receptor 2 (PAR2) decreases apoptosis in colonic epithelial cells. J Biol Chem. 2014;289:34366–34377. doi: 10.1074/jbc.M114.610485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]233. Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO, Desormeaux C, Cenac N, Motta JP, Larauche M, Tache Y, et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut. 2017;66:1767–1778. doi: 10.1136/gutjnl-2016-312094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]234. Vergnolle N, Macnaughton WK, Al-Ani B, Saifeddine M, Wallace JL, Hollenberg MD. Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc Natl Acad Sci U S A. 1998;95:7766–7771. doi: 10.1073/pnas.95.13.7766. [PMC free article] [PubMed] [CrossRef] [Google Scholar]235. Buresi MC, Schleihauf E, Vergnolle N, Buret A, Wallace JL, Hollenberg MD, MacNaughton WK. Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(-) secretion in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2001;281:G323–G332. doi: 10.1152/ajpgi.2001.281.2.G323. [PubMed] [CrossRef] [Google Scholar]236. Chin AC, Vergnolle N, MacNaughton WK, Wallace JL, Hollenberg MD, Buret AG. Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc Natl Acad Sci U S A. 2003;100:11104–11109. doi: 10.1073/pnas.1831452100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]237. Idell S, Gonzalez K, Bradford H, Macarthur CK, Fein AM, Maunder RJ, Garcia JGN, Griffith DE, Weiland J, Martin TR, et al. Procoagulant activity in Bronchoalveolar lavage in the adult respiratory-distress syndrome - contribution of tissue factor associated with factor-vii. Am Rev Respir Dis. 1987;136:1466–1474. doi: 10.1164/ajrccm/136.6.1466. [PubMed] [CrossRef] [Google Scholar]238. Jarjour NN, Calhoun WJ, Schwartz LB, Busse WW. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am Rev Respir Dis. 1991;144:83–87. doi: 10.1164/ajrccm/144.1.83. [PubMed] [CrossRef] [Google Scholar]239. Clark JM, Abraham WM, Fishman CE, Forteza R, Ahmed A, Cortes A, Warne RL, Moore WR, Tanaka RD. Tryptase inhibitors block allergen-induced airway and inflammatory responses in allergic sheep. Am J Respir Crit Care Med. 1995;152:2076–2083. doi: 10.1164/ajrccm.152.6.8520778. [PubMed] [CrossRef] [Google Scholar]240. Rice KD, Tanaka RD, Katz BA, Numerof RP, Moore WR. Inhibitors of tryptase for the treatment of mast cell-mediated diseases. Curr Pharm Des. 1998;4:381–396. [PubMed] [Google Scholar]241. Hauck RW, Schulz C, Schomig A, Hoffman RK, Panettieri RA., Jr Alpha-thrombin stimulates contraction of human bronchial rings by activation of protease-activated receptors. Am J Phys. 1999;277:L22–L29. [PubMed] [Google Scholar]242. Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, Moffatt JD. A protective role for protease-activated receptors in the airways. Nature. 1999;398:156–160. doi: 10.1038/18223. [PubMed] [CrossRef] [Google Scholar]243. Cocks TM, Moffatt JD. Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther. 2001;14:183–191. doi: 10.1006/pupt.2001.0285. [PubMed] [CrossRef] [Google Scholar]244. Schmidlin F, Amadesi S, Vidil R, Trevisani M, Martinet N, Caughey G, Tognetto M, Cavallesco G, Mapp C, Geppetti P, Bunnett NW. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med. 2001;164:1276–1281. doi: 10.1164/ajrccm.164.7.2101157. [PubMed] [CrossRef] [Google Scholar]245. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002;169:5315–5321. doi: 10.4049/jimmunol.169.9.5315. [PubMed] [CrossRef] [Google Scholar]246. Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol. 2001;108:797–803. doi: 10.1067/mai.2001.119025. [PubMed] [CrossRef] [Google Scholar]247. Miotto D, Hollenberg MD, Bunnett NW, Papi A, Braccioni F, Boschetto P, Rea F, Zuin A, Geppetti P, Saetta M, et al. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax. 2002;57:146–151. doi: 10.1136/thorax.57.2.146. [PMC free article] [PubMed] [CrossRef] [Google Scholar]248. Ricciardolo FL, Steinhoff M, Amadesi S, Guerrini R, Tognetto M, Trevisani M, Creminon C, Bertrand C, Bunnett NW, Fabbri LM, et al. Presence and bronchomotor activity of protease-activated receptor-2 in Guinea pig airways. Am J Respir Crit Care Med. 2000;161:1672–1680. doi: 10.1164/ajrccm.161.5.9907133. [PubMed] [CrossRef] [Google Scholar]249. Carr MJ, Schechter NM, Undem BJ. Trypsin-induced, neurokinin-mediated contraction of Guinea pig bronchus. Am J Respir Crit Care Med. 2000;162:1662–1667. doi: 10.1164/ajrccm.162.5.9912099. [PubMed] [CrossRef] [Google Scholar]250. Lin C, von der Thusen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, Borensztajn K, Spek CA. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis. J Cell Mol Med. 2015;19:1346–1356. doi: 10.1111/jcmm.12520. [PMC free article] [PubMed] [CrossRef] [Google Scholar]251. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, Guy RH, Macgowan AL, Tazi-Ahnini R, Ward SJ. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129:1892–1908. doi: 10.1038/jid.2009.133. [PubMed] [CrossRef] [Google Scholar]252. Derian CK, Eckardt AJ, Andrade-Gordon P. Differential regulation of human keratinocyte growth and differentiation by a novel family of protease-activated receptors. Cell Growth Differ. 1997;8:743–749. [PubMed] [Google Scholar]253. D'Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol. 2001;158:2031–2041. doi: 10.1016/S0002-9440(10)64675-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]254. Wakita H, Furukawa F, Takigawa M. Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Physicians. 1997;109:190–207. [PubMed] [Google Scholar]255. Kanke T, Macfarlane SR, Seatter MJ, Davenport E, Paul A, McKenzie RC, Plevin R. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory kappa B kinases in NCTC 2544 keratinocytes. J Biol Chem. 2001;276:31657–31666. doi: 10.1074/jbc.M100377200. [PubMed] [CrossRef] [Google Scholar]256. Kawagoe J, Takizawa T, Matsumoto J, Tamiya M, Meek SE, Smith AJ, Hunter GD, Plevin R, Saito N, Kanke T, et al. Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn J Pharmacol. 2002;88:77–84. doi: 10.1254/jjp.88.77. [PubMed] [CrossRef] [Google Scholar]257. Lee SE, Jeong SK, Lee SH. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J. 2010;51:808–822. doi: 10.3349/ymj.2010.51.6.808. [PMC free article] [PubMed] [CrossRef] [Google Scholar]258. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, Luger TA, Schmelz M. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–6180. doi: 10.1523/JNEUROSCI.23-15-06176.2003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]259. Calabresi E, Petrelli F, Bonifacio AF, Puxeddu I, Alunno A. One year in review 2018: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2018;36:175–184. [PubMed] [Google Scholar]260. Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS, Ferrell WR. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther. 2006;316:1017–1024. doi: 10.1124/jpet.105.093807. [PubMed] [CrossRef] [Google Scholar]261. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest. 2003;111:35–41. doi: 10.1172/JCI16913. [PMC free article] [PubMed] [CrossRef] [Google Scholar]262. McCulloch K, McGrath S, Huesa C, Dunning L, Litherland G, Crilly A, Hultin L, Ferrell WR, Lockhart JC, Goodyear CS. Rheumatic disease: protease-activated Receptor-2 in synovial joint pathobiology. Front Endocrinol (Lausanne) 2018;9:257. doi: 10.3389/fendo.2018.00257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]263. Crilly A, Palmer H, Nickdel MB, Dunning L, Lockhart JC, Plevin R, McInnes IB, Ferrell WR. Immunomodulatory role of proteinase-activated receptor-2. Ann Rheum Dis. 2012;71:1559–1566. doi: 10.1136/annrheumdis-2011-200869. [PMC free article] [PubMed] [CrossRef] [Google Scholar]264. Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, Eckardt AJ, Hoekstra WJ, McComsey DF, Oksenberg D, et al. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc Natl Acad Sci U S A. 1999;96:12257–12262. doi: 10.1073/pnas.96.22.12257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]265. Brass LF, Vassallo RR, Jr, Belmonte E, Ahuja M, Cichowski K, Hoxie JA. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J Biol Chem. 1992;267:13795–13798. [PubMed] [Google Scholar]266. Chackalamannil S, Wang Y, Greenlee WJ, Hu Z, Xia Y, Ahn HS, Boykow G, Hsieh Y, Palamanda J, Agans-Fantuzzi J, et al. Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem. 2008;51:3061–3064. doi: 10.1021/jm800180e. [PubMed] [CrossRef] [Google Scholar]267. Kogushi M, Matsuoka T, Kawata T, Kuramochi H, Kawaguchi S, Murakami K, Hiyoshi H, Suzuki S, Kawahara T, Kajiwara A, Hishinuma I. The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur J Pharmacol. 2011;657:131–137. doi: 10.1016/j.ejphar.2011.01.058. [PubMed] [CrossRef] [Google Scholar]268. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A. 2002;99:643–648. doi: 10.1073/pnas.022460899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]269. Aisiku O, Peters CG, De Ceunynck K, Ghosh CC, Dilks JR, Fustolo-Gunnink SF, Huang M, Dockendorff C, Parikh SM, Flaumenhaft R. Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood. 2015;125:1976–1985. doi: 10.1182/blood-2014-09-599910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]270. Becker RC, Moliterno DJ, Jennings LK, Pieper KS, Pei J, Niederman A, Ziada KM, Berman G, Strony J, Joseph D, et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet. 2009;373:919–928. doi: 10.1016/S0140-6736(09)60230-0. [PubMed] [CrossRef] [Google Scholar]271. Morrow DA, Braunwald E, Bonaca MP, Ameriso SF, Dalby AJ, Fish MP, Fox KA, Lipka LJ, Liu X, Nicolau JC, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–1413. doi: 10.1056/NEJMoa1200933. [PubMed] [CrossRef] [Google Scholar]272. Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van de Werf F, White HD, Aylward PE, Wallentin L, Chen E, et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med. 2012;366:20–33. doi: 10.1056/NEJMoa1109719. [PubMed] [CrossRef] [Google Scholar]273. Goto S, Ogawa H, Takeuchi M, Flather MD, Bhatt DL, Investigators JL. Double-blind, placebo-controlled phase II studies of the protease-activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients with acute coronary syndrome or high-risk coronary artery disease. Eur Heart J. 2010;31:2601–2613. doi: 10.1093/eurheartj/ehq320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]274. Wiviott SD, Flather MD, O'Donoghue ML, Goto S, Fitzgerald DJ, Cura F, Aylward P, Guetta V, Dudek D, Contant CF, et al. Randomized trial of atopaxar in the treatment of patients with coronary artery disease: the lessons from antagonizing the cellular effect of thrombin-coronary artery disease trial. Circulation. 2011;123:1854–1863. doi: 10.1161/CIRCULATIONAHA.110.001404. [PubMed] [CrossRef] [Google Scholar]275. O'Donoghue ML, Bhatt DL, Wiviott SD, Goodman SG, Fitzgerald DJ, Angiolillo DJ, Goto S, Montalescot G, Zeymer U, Aylward PE, et al. Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: the lessons from antagonizing the cellular effects of thrombin-acute coronary syndromes trial. Circulation. 2011;123:1843–1853. doi: 10.1161/CIRCULATIONAHA.110.000786. [PubMed] [CrossRef] [Google Scholar]276. Gurbel PA, Bliden KP, Turner SE, Tantry US, Gesheff MG, Barr TP, Covic L, Kuliopulos A. Cell-penetrating Pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler Thromb Vasc Biol. 2016;36:189–197. doi: 10.1161/ATVBAHA.115.306777. [PMC free article] [PubMed] [CrossRef] [Google Scholar]277. Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, Gray TJ, Connell S, Garonzik S, Ma X, et al. PAR4 (protease-activated receptor 4) antagonism with BMS-986120 inhibits human ex vivo Thrombus formation. Arterioscler Thromb Vasc Biol. 2018;38:448–456. doi: 10.1161/ATVBAHA.117.310104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]278. Rasmussen UB, Gachet C, Schlesinger Y, Hanau D, Ohlmann P, Van Obberghen-Schilling E, Pouyssegur J, Cazenave JP, Pavirani A. A peptide ligand of the human thrombin receptor antagonizes alpha- thrombin and partially activates platelets. J Biol Chem. 1993;268:14322–14328. [PubMed] [Google Scholar]279. Seiler SM, Peluso M, Tuttle JG, Pryor K, Klimas C, Matsueda GR, Bernatowicz MS. Thrombin receptor activation by thrombin and receptor-derived peptides in platelet and CHRF-288 cell membranes: receptor-stimulated GTPase and evaluation of agonists and partial agonists. Mol Pharmacol. 1996;49:190–197. [PubMed] [Google Scholar]280. Cisowski J, O'Callaghan K, Kuliopulos A, Yang J, Nguyen N, Deng Q, Yang E, Fogel M, Tressel S, Foley C, et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol. 2011;179:513–523. doi: 10.1016/j.ajpath.2011.03.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]281. Cheung WM, D'Andrea MR, Andrade-Gordon P, Damiano BP. Altered vascular injury responses in mice deficient in protease-activated receptor-1. Arterioscler Thromb Vasc Biol. 1999;19:3014–3024. doi: 10.1161/01.ATV.19.12.3014. [PubMed] [CrossRef] [Google Scholar]282. Young SE, Duvernay MT, Schulte ML, Lindsley CW, Hamm HE. Synthesis of indole derived protease-activated receptor 4 antagonists and characterization in human platelets. PLoS One. 2013;8:e65528. doi: 10.1371/journal.pone.0065528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]283. Zhang HC, Derian CK, Andrade-Gordon P, Hoekstra WJ, McComsey DF, White KB, Poulter BL, Addo MF, Cheung WM, Damiano BP, et al. Discovery and optimization of a novel series of thrombin receptor (par-1) antagonists: potent, selective peptide mimetics based on indole and indazole templates. J Med Chem. 2001;44:1021–1024. doi: 10.1021/jm000506s. [PubMed] [CrossRef] [Google Scholar]284. Xu QL, Guo XH, Liu JX, Chen B, Liu ZF, Su L. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation. Cell Biol Int. 2015;39:411–417. doi: 10.1002/cbin.10408. [PubMed] [CrossRef] [Google Scholar]285. Nawata S, Murakami A, Hirabayashi K, Sakaguchi Y, Ogata H, Suminami Y, Numa F, Nakamura K, Kato H. Identification of squamous cell carcinoma antigen-2 in tumor tissue by two-dimensional electrophoresis [in process citation] Electrophoresis. 1999;20:614–617. doi: 10.1002/(SICI)1522-2683(19990301)20:3<614::AID-ELPS614>3.0.CO;2-R. [PubMed] [CrossRef] [Google Scholar]286. Kato Y, Kita Y, Nishio M, Hirasawa Y, Ito K, Yamanaka T, Motoyama Y, Seki J. In vitro antiplatelet profile of FR171113, a novel non-peptide thrombin receptor antagonist. Eur J Pharmacol. 1999;384:197–202. doi: 10.1016/S0014-2999(99)00658-5. [PubMed] [CrossRef] [Google Scholar]287. Tanaka M, Arai H, Liu N, Nogaki F, Nomura K, Kasuno K, Oida E, Kita T, Ono T. Role of coagulation factor Xa and protease-activated receptor 2 in human mesangial cell proliferation. Kidney Int. 2005;67:2123–2133. doi: 10.1111/j.1523-1755.2005.00317.x. [PubMed] [CrossRef] [Google Scholar]288. Kogushi M, Matsuoka T, Kobayashi H, Sato N, Suzuki S, Kawahara T, Kajiwara A, Hishinuma I. Biological characterization of ER129614-06, a novel, non-peptide protease-activated receptor-1 (PAR-1) antagonist. Atheroscler Suppl. 2003;4:245–246. doi: 10.1016/S1567-5688(03)91054-3. [CrossRef] [Google Scholar]289. Kawahara T, Suzuki S, Kogushi M, Matsuoka T, Kobayashi H, Kajiwara A, Hishinuma I. Discovery and optimization of potent orally active small molecular thrombin receptor PAR-1 antagonists. Abstr Pap Am Chem Soc. 2003;225:U215. [Google Scholar]290. Perez M, Lamothe M, Maraval C, Mirabel E, Loubat C, Planty B, Horn C, Michaux J, Marrot S, Letienne R, et al. Discovery of novel protease activated receptors 1 antagonists with potent antithrombotic activity in vivo. J Med Chem. 2009;52:5826–5836. doi: 10.1021/jm900553j. [PubMed] [CrossRef] [Google Scholar]291. Monjotin N, Gillespie J, Farrie M, Le Grand B, Junquero D, Vergnolle N. F16357, a novel protease-activated receptor 1 antagonist, improves urodynamic parameters in a rat model of interstitial cystitis. Br J Pharmacol. 2016;173:2224–2236. doi: 10.1111/bph.13501. [PMC free article] [PubMed] [CrossRef] [Google Scholar]292. Ahn HS, Foster C, Boykow G, Stamford A, Manna M, Graziano M. Inhibition of cellular action of thrombin by N3-cyclopropyl-7-[[4-(1-methylethyl)phenyl]methyl]-7H-pyrrolo[3, 2-f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem Pharmacol. 2000;60:1425–1434. doi: 10.1016/S0006-2952(00)00460-3. [PubMed] [CrossRef] [Google Scholar]293. Gupta N, Liu R, Shin S, Sinha R, Pogliano J, Pogliano K, Griffin JH, Nizet V, Corriden R. SCH79797 improves outcomes in experimental bacterial pneumonia by boosting neutrophil killing and direct antibiotic activity. J Antimicrob Chemother. 2018;73:1586–1594. doi: 10.1093/jac/dky033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]294. Kogushi M, Kobayashi H, Matsuoka T, Suzuki S, Kawahara T, Kajiwara A, Hishinuma L. Anti-thrombotic and bleeding time effects of E5555, an orally active protease-activated receptor-1 antagonist, in Guinea pigs. Circulation. 2003;108:280. [Google Scholar]295. Asteriti S, Daniele S, Porchia F, Dell'anno MT, Fazzini A, Pugliesi I, Trincavelli ML, Taliani S, Martini C, Mazzoni MR, Gilchrist A. Modulation of PAR(1) signaling by benzimidazole compounds. Br J Pharmacol. 2012;167(1):80–94. doi: 10.1111/j.1476-5381.2012.01974.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]296. Deng X, Mercer PF, Scotton CJ, Gilchrist A, Chambers RC. Thrombin induces fibroblast CCL2/JE production and release via coupling of PAR1 to Galphaq and cooperation between ERK1/2 and rho kinase signaling pathways. Mol Biol Cell. 2008;19:2520–2533. doi: 10.1091/mbc.e07-07-0720. [PMC free article] [PubMed] [CrossRef] [Google Scholar]297. Tressel SL, Kaneider NC, Kasuda S, Foley C, Koukos G, Austin K, Agarwal A, Covic L, Opal SM, Kuliopulos A. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med. 2011;3:370–384. doi: 10.1002/emmm.201100145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]298. Lin C, Duitman J, Daalhuisen J, Ten Brink M, von der Thusen J, van der Poll T, Borensztajn K, Spek CA. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis. Thorax. 2014;69:152–160. doi: 10.1136/thoraxjnl-2013-203877. [PubMed] [CrossRef] [Google Scholar]299. Dockendorff C, Aisiku O, Verplank L, Dilks JR, Smith DA, Gunnink SF, Dowal L, Negri J, Palmer M, Macpherson L, et al. Discovery of 1,3-diaminobenzenes as selective inhibitors of platelet activation at the PAR1 receptor. ACS Med Chem Lett. 2012;3:232–237. doi: 10.1021/ml2002696. [PMC free article] [PubMed] [CrossRef] [Google Scholar]300. De Ceunynck K, Peters CG, Jain A, Higgins SJ, Aisiku O, Fitch-Tewfik JL, Chaudhry SA, Dockendorff C, Parikh SM, Ingber DE, Flaumenhaft R. PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A. 2018;115:E982–E991. doi: 10.1073/pnas.1718600115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]301. Zhong W, Chen S, Zhang Q, Xiao T, Qin Y, Gu J, Sun B, Liu Y, Jing X, Hu X, et al. Doxycycline directly targets PAR1 to suppress tumor progression. Oncotarget. 2017;8:16829–16842. [PMC free article] [PubMed] [Google Scholar]302. Zhong W, Chen S, Qin Y, Zhang H, Wang H, Meng J, Huai L, Zhang Q, Yin T, Lei Y, et al. Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-kappaB/miR-17/E-cadherin pathway. Oncotarget. 2017;8:104855–104866. [PMC free article] [PubMed] [Google Scholar]303. Bendeck MP, Conte M, Zhang M, Nili N, Strauss BH, Farwell SM. Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol. 2002;160:1089–1095. doi: 10.1016/S0002-9440(10)64929-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]304. Wei H, Wei Y, Tian F, Niu T, Yi G. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury. Physiol Res. 2016;65:145–153. [PubMed] [Google Scholar]305. Al-Ani B, Saifeddine M, Wijesuriya SJ, Hollenberg MD. Modified proteinase-activated receptor-1 and -2 derived peptides inhibit proteinase-activated receptor-2 activation by trypsin. J Pharmacol Exp Ther. 2002;300:702–708. doi: 10.1124/jpet.300.2.702. [PubMed] [CrossRef] [Google Scholar]306. Kanke T, Kabeya M, Kubo S, Kondo S, Yasuoka K, Tagashira J, Ishiwata H, Saka M, Furuyama T, Nishiyama T, et al. Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol. 2009;158:361–371. doi: 10.1111/j.1476-5381.2009.00342.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]307. Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R. Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol. 2009;158:1695–1704. doi: 10.1111/j.1476-5381.2009.00415.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]308. Boitano S, Hoffman J, Flynn AN, Asiedu MN, Tillu DV, Zhang Z, Sherwood CL, Rivas CM, DeFea KA, Vagner J, Price TJ. The novel PAR2 ligand C391 blocks multiple PAR2 signalling pathways in vitro and in vivo. Br J Pharmacol. 2015;172:4535–4545. doi: 10.1111/bph.13238. [PMC free article] [PubMed] [CrossRef] [Google Scholar]309. Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110) Br J Pharmacol. 2012;165:1413–1423. doi: 10.1111/j.1476-5381.2011.01610.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]310. Gardell LR, Ma JN, Seitzberg JG, Knapp AE, Schiffer HH, Tabatabaei A, Davis CN, Owens M, Clemons B, Wong KK, et al. Identification and characterization of novel small-molecule protease-activated receptor 2 agonists. J Pharmacol Exp Ther. 2008;327:799–808. doi: 10.1124/jpet.108.142570. [PubMed] [CrossRef] [Google Scholar]311. Chanakira A, Westmark PR, Ong IM, Sheehan JP. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol Oncol. 2017;145:167–175. doi: 10.1016/j.ygyno.2017.01.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]312. Sun Q, Wang Y, Zhang J, Lu J. ENMD-1068 inhibits liver fibrosis through attenuation of TGF-beta1/Smad2/3 signaling in mice. Sci Rep. 2017;7:5498. doi: 10.1038/s41598-017-05190-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]313. Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP. Novel agonists and antagonists for human protease activated receptor 2. J Med Chem. 2010;53:7428–7440. doi: 10.1021/jm100984y. [PubMed] [CrossRef] [Google Scholar]314. Lieu T, Savage E, Zhao P, Edgington-Mitchell L, Barlow N, Bron R, Poole DP, McLean P, Lohman RJ, Fairlie DP, Bunnett NW. Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2. Br J Pharmacol. 2016;173:2752–2765. doi: 10.1111/bph.13554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]315. Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Dore AS, et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature. 2017;545:112–115. doi: 10.1038/nature22309. [PubMed] [CrossRef] [Google Scholar]316. Sevigny LM, Austin KM, Zhang P, Kasuda S, Koukos G, Sharifi S, Covic L, Kuliopulos A. Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arterioscler Thromb Vasc Biol. 2011;31:e100–e106. doi: 10.1161/ATVBAHA.111.238261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]317. Michael ES, Kuliopulos A, Covic L, Steer ML, Perides G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G516–G526. doi: 10.1152/ajpgi.00296.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]318. Ishikawa C, Tsuda T, Konishi H, Nakagawa N, Yamanishi K. Tetracyclines modulate protease-activated receptor 2-mediated proinflammatory reactions in epidermal keratinocytes. Antimicrob Agents Chemother. 2009;53:1760–1765. doi: 10.1128/AAC.01540-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]319. Liu XJ, Mu ZL, Zhao Y, Zhang JZ. Topical tetracycline improves MC903-induced atopic dermatitis in mice through inhibition of inflammatory cytokines and Thymic stromal Lymphopoietin expression. Chin Med J. 2016;129:1483–1490. doi: 10.4103/0366-6999.183427. [PMC free article] [PubMed] [CrossRef] [Google Scholar]320. Castro ML, Franco GC, Branco-de-Almeida LS, Anbinder AL, Cogo-Muller K, Cortelli SC, Duarte S, Saxena D, Rosalen PL. Downregulation of proteinase-activated Receptor-2, Interleukin-17, and other Proinflammatory genes by subantimicrobial doxycycline dose in a rat periodontitis model. J Periodontol. 2016;87:203–210. doi: 10.1902/jop.2015.150385. [PubMed] [CrossRef] [Google Scholar]321. Hollenberg MD, Saifeddine M. Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can J Physiol Pharmacol. 2001;79:439–442. doi: 10.1139/y01-013. [PubMed] [CrossRef] [Google Scholar]322. Kim HY, Goo JH, Joo YA, Lee HY, Lee SM, Oh CT, Ahn SM, Kim NH, Hwang JS. Impact on inflammation and recovery of skin barrier by nordihydroguaiaretic acid as a protease-activated receptor 2 antagonist. Biomol Ther (Seoul) 2012;20:463–469. doi: 10.4062/biomolther.2012.20.5.463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]323. Yang J, Wu J, Kowalska MA, Dalvi A, Prevost N, O'Brien PJ, Manning D, Poncz M, Lucki I, Blendy JA, Brass LF. Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci U S A. 2000;97:9984–9989. doi: 10.1073/pnas.180194597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]324. Wu CC, Huang SW, Hwang TL, Kuo SC, Lee FY, Teng CM. YD-3, a novel inhibitor of protease-induced platelet activation. Br J Pharmacol. 2000;130:1289–1296. doi: 10.1038/sj.bjp.0703437. [PMC free article] [PubMed] [CrossRef] [Google Scholar]325. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Lee CY, Teng CM. Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb Haemost. 2002;87:1026–1033. doi: 10.1055/s-0037-1613128. [PubMed] [CrossRef] [Google Scholar]326. Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Wood MR, Hamm HE, Lindsley CW. A novel and selective PAR4 antagonist: ML354. In: Probe reports from the NIH molecular libraries program. Bethesda: National Center for Biotechnology Information; 2015. [PubMed]327. Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Locuson CW, 2nd, Wood MR, Daniels JS, et al. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: discovery and SAR of ML354. Bioorg Med Chem Lett. 2014;24:4708–4713. doi: 10.1016/j.bmcl.2014.08.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]328. Peek GJ, Elbourne D, Mugford M, Tiruvoipati R, Wilson A, Allen E, Clemens F, Firmin R, Hardy P, Hibbert C, et al. Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR) Health Technol Assess. 2010;14:1–46. doi: 10.3310/hta14350. [PubMed] [CrossRef] [Google Scholar]329. Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med. 2017;9. 10.1126/scitranslmed.aaf5294. [PubMed]330. Hollenberg MD, Saifeddine M, Sandhu S, Houle S, Vergnolle N. Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol. 2004;143:443–454. doi: 10.1038/sj.bjp.0705946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]Articles from Thrombosis Journal are provided here courtesy of BMC

Other Formats

PDF (2.1M)

Actions

Cite

Collections

Add to Collections

Create a new collection

Add to an existing collection

Name your collection:

Name must be less than characters

Choose a collection:

Unable to load your collection due to an error

Please try again

Add

Cancel

Share

 

 

 

Permalink

Copy

RESOURCES

Similar articles

Cited by other articles

Links to NCBI Databases

[x]

Cite

Copy

Download .nbib

.nbib

Format:

AMA

APA

MLA

NLM

Follow NCBI

Twitter

Facebook

LinkedIn

GitHub

Connect with NLM

SM-Twitter

SM-Facebook

SM-Youtube

National Library of Medicine

8600 Rockville Pike

Bethesda, MD 20894

Web Policies

FOIA

HHS Vulnerability Disclosure

Help

Accessibility

Careers

NLM

NIH

HHS

USA.gov