tp钱包官网版app正版|以太网是什么意思

作者: tp钱包官网版app正版
2024-03-09 23:06:19

什么是「以太网」,和局域网,互联网的区别是什么? - 知乎

什么是「以太网」,和局域网,互联网的区别是什么? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册知乎话题​的提问互联网知识库网络安全局域网以太网(Ethernet)什么是「以太网」,和局域网,互联网的区别是什么?关注者35被浏览119,063关注问题​写回答​邀请回答​好问题 4​添加评论​分享​15 个回答默认排序华为云开发者联盟​已认证账号​ 关注以太网是现实世界中最普遍的一种计算机网络,作为一种计算机局域网技术,它和局域网和互联网有什么区别与联系呢?我们现在来一起分别探讨与深入研究一下它们各自的定义与它们之间的区别!一. 什么是以太网?以太网(Ethernet)指的是由 Xerox公司创建并由Xerox、Intel和 DEC公司联合开发的基带局域网规范,通用的以太网标准于1980年9月30日出台,是当今现有局域网采用的最通用的通信协议标准(是局域网的一种)。以太网是一种计算机局域网技术。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。1.1. 以太网的分类标准以太网(10Mbit/s)快速以太网(100Mbit/s)千兆(10Gbit/s)以太网标准以太网:最开始以太网只有10Mbps的吞吐量,它所使用的是CSMA/CD(带有冲突检测的载波侦听多路访问)的访问控制方法,通常把这种最早期的10Mbps以太网称之为标准以太网。以太网主要有两种传输介质,那就是双绞线和同轴电缆。所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。快速以太网:随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。千兆以太网:千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。 千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。二. 什么是局域网?局域网的英文全称是“Local Area Network”,缩写为“LAN”,是指在某一个区域内由多台计算机互联成的计算机组。局域网可以实现文件管理、应用软件共享、打印机共享、工作组内的日程安排、电子邮件和传真通信服务等功能。局域网是指在某一区域内由多台计算机互联成的计算机组。一般是方圆几千米以内。局域网可以实现文件管理、应用软件共享、打印机共享、工作组内的日程安排、电子邮件和传真通信服务等功能。局域网是封闭型的,可以由办公室内的两台计算机组成,也可以由一个公司内的上千台计算机组成。局域网一般为一个部门或单位所有,建网、维护以及扩展等较容易,系统灵活性高。其主要特点是:覆盖的地理范围较小,只在一个相对独立的局部范围内联,如一座或集中的建筑群内。使用专门铺设的传输介质进行联网,数据传输速率高(10Mb/s~10Gb/s)。通信延迟时间短,可靠性较高。局域网的类型很多,若按网络使用的传输介质分类,可分为有线网和无线网;若按网络拓扑结构分类,可分为总线型、星型、环型、树型、混合型等;若按传输介质所使用的访问控制方法分类,又可分为以太网、令牌环网、FDDI网和无线局域网等。2.1. 局域网的拓扑结构局域网络拓扑结构是指用传输介质互联各种设备的物理布局,网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接。 这种连接方式就叫做拓扑结构。 目前常见的网络拓扑结构主要有总线型结构、环形结构、树形结构和网状结构等形状。目前常见的网络拓扑结构主要有以下三大类:(1)星型结构(2)环型结构(3)总线型结构星型结构:优点:网络结构简单,易于维护和管理;2. 控制简单,便于建网;3. 网络可靠性高,稳定性好。单个节点的故障只影响一个设备;4. 传输速度快,延迟小,误差低;5. 系统容易扩容。缺点:对中心节点的要求极高(包括中心节点的可靠性和冗余度);2. 如果中心节点出故障,可能造成大面积网络瘫痪;3. 中心节点负担过重,结构较复杂,容易出现瓶颈。4. 系统安全性较差,资源共享性能较差。环型结构:优点:各工作站地位相等;2. 系统中无信道选择问题;3. 网络数据传输不会出现冲突和堵塞现象。缺点:可靠性低,节点的故障将会引起全网的故障;2. 故障诊断困难;3. 不易重新配置网络;4. 当环中节点过多的时候,将会影响信息传输速率。总线型结构:优点:网络结构简单,可靠性高;2. 电缆长度短,易于布线和维护;3. 节点间响应速度快,共享资源能力强;4. 设备投入量少,成本低;5. 易于扩充,数据端用户入网灵活。缺点:故障诊断困难;2. 故障隔离困难,任何节点的故障都有可能导致全网问题;3. 实时性较差;4. 网络规模较大时,传输效率下降幅度大。三. 什么是互联网?互联网(Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,例如相互关系的超文本文件,还有万维网(WWW)的应用,电子邮件,通话,以及文件共享服务。20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。互联网,即广域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。内部结构:互联网指的是通过TCP/IP协议族相互连接在一起的计算机的网络。TCP是Transmission Control Protocol,传输控制协议;IP是Internet Protocol,网际协议。TCP/IP协议族是一个网络通讯模型,是当前互联网通讯的基础架构。IP用来去识别网络上的一台计算机。计算机要连接到一起相互通信,首先需要知道连接的目标计算机,而IP就能标识一台计算机。做一个类比,我们人跟人之间也需要建立连接才能交流,在一群人中说话,首先喊出一个人的名字,他就知道你在跟他说话了。IP就是计算机的名字。TCP是计算机之间控制传输信息的协议,同样的类比,就是人与人之间沟通的语言和方式。一个不会外语的中国人跟一个美国人交流是无效的,就跟好像一台计算机发送目标计算机无法识别的数据包。能够识别出网络上的计算机,同时也能以相互理解的方式进行通讯,这样计算机就可以连接到一起了。3.1. 数据是如何传输的?当一台计算机向另一台计算机发送数据时,计算机会按照互联网提前制定好的一系列协议规则把数据分段打包成信息包,然后给每一分组加上一个首部字节(可以理解为一个标识)。这些信息包通过网线经过路由器、交换机选择目的地址发送到另一台接收信息的计算机。数据传输类比于现实中的货物运输系统。一个仓库会把一批货物通过一定的规律分配给多个汽车、火车等交通工具。这些汽车或者火车通过公路、铁路把货物运送到目的地。在目的地再按照货物信息把货物分类卸车放到仓库中。当然不管是公路或者铁路都会经过一些立交桥或者其他过路车站。四. 以太网、局域网、互联网的区别我们根据上文的解释,可以得到下文理解:局域网是一个局部范围的计算机组。以太网可以看成是一种实现局域网通信的技术标准,是目前最广泛的局域网技术。局域网相对应的就是广域网。互联网可以看成是局域网、广域网等组成的一个最大的网络,它可以把世界上各个地方的网络都连接起来,个人、政府、学校、企业,只要你能想到的都包含在内。以太网可以用在局域网、广域网、也可以用在互联网上,因为简单易用,现在网络有以太网化的趋势。总结:互联网=通过路由协议联通的N个局域网。局域网=以太网+TCP/IP协议。以太网=基于广播(MAC寻址)和碰撞检测机制 CSMA/CD 的网络。参考资料局域网_百度百科 (http://baidu.com)本文分享自华为云社区《【云驻共创】什么是「以太网」,它和局域网,互联网的区别是什么?》,作者:上进小菜猪。点击关注,第一时间了解华为云新鲜技术~编辑于 2023-07-28 09:06​赞同 82​​4 条评论​分享​收藏​喜欢收起​知乎用户9Yn7az​ 关注以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。编辑于 2022-02-13 12:07​赞同 7​​1 条评论​分享​收藏​喜欢

以太网_百度百科

百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心以太网播报讨论上传视频计算机局域网技术收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。中文名以太网外文名ethernet定    义局域网的一种发    源xerox(施乐)创建时间1980目录1以太网简介2以太网起源3类型介绍4经典以太网5交换式以太网6相关技术7以太网交换机8存在的问题9车载以太网10工业以太网以太网简介播报编辑以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以快速以太网、千兆以太网和万兆以太网的形式呈现。 [1]以太网的标准拓扑结构为总线型拓扑,但快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网起源播报编辑以太网的故事始于ALOHA时期,确切的时间是在一个名叫Robert Metcalfe的学生获得麻省理工学院的学士学位后,搬到河对岸的哈佛大学攻读博士学位之后。在他学习期间,他接触到了Abramson的工作,他对此很感兴趣。从哈佛毕业之后,他决定前往施乐帕洛阿尔托研究中心正式工作之前留在夏威夷度假,以便帮助Abramson工作。当他到帕洛阿尔托研究中心,他看到那里的研究人员已经设计并建造出后来称为个人计算机的机器,但这些机器都是孤零零的;他便运用帮助Abramson工作获得的知识与同事David Boggs 设计并实现了第一个局域网。该局域网采用一个长的粗同轴电缆,以3Mbps速率运行。 [1]他们把这个系统命名为以太网,人们曾经认为通过它可以传播电磁辐射。 [1]类型介绍播报编辑早期的以太网兆比特以太网施乐以太网(Xerox Ethernet,又称“施乐以太网”)──是以太网的雏型。最初的2.94Mbit/s以太网仅在施乐公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投入商场市场,且被普遍使用。而EV2的网络就是受IEEE承认的10BASE5。10BROAD36──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。1BASE5──也称为星型局域网,速率是1Mbit/s。在商业上很失败,但同时也是双绞线的第一次使用。10Mbps以太网10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)──最早实现10 Mbit/s以太网。早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台计算机的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端透过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际上被10BASE2取代。10BASE2(又称细缆(Thin Ethernet)或模拟网上)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算器,计算器使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细、布线方便、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。StarLAN──第一个双绞线上实现的以太网上标准10 Mbit/s。后发展成10BASE-T。10BASE-T──使用3类双绞线、4类双绞线、5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。FOIRL ──光纤中继器链路。光纤以太网上原始版本。10BASE-F ── 10Mbps以太网光纤标准通称,2公里。只有10BASE-FL应用比较广泛。10BASE-FL ── FOIRL标准一种升级。10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。10BASE-FP ──无中继被动星型网,没有实际应用的案例。100Mbps以太网(快速以太网)参见:百兆以太网快速以太网(Fast Ethernet)为IEEE在1995年发表的网上标准,能提供达100Mbps的传输速度。100BASE-T-- 下面三个100 Mbit/s双绞线标准通称,最远100米。100BASE-TX-- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。100BASE-FX-- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。 [2]1Gbps以太网1000BASE-T-- 1 Gbit/s介质超五类双绞线或6类双绞线。1000BASE-SX-- 1 Gbit/s多模光纤(取决于频率以及光纤半径,使用多模光纤时最长距离在220M至550M之间)。1000BASE-LX-- 1 Gbit/s多模光纤(小于550M)、单模光纤(小于5000M)。1000BASE-LX10-- 1 Gbit/s单模光纤(小于10KM)。长距离方案1000BASE-LHX--1 Gbit/s单模光纤(10KM至40KM)。长距离方案1000BASE-ZX--1 Gbit/s单模光纤(40KM至70KM)。长距离方案1000BASE-CX-- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。10Gbps以太网参见:10吉比特以太网新的万兆以太网标准包含7种不同类型,分别适用于局域网、城域网和广域网。使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand4x连接器和CX4电缆,最大长度15米。10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。10GBASE-LR和10GBASE-ER -- 透过单模光纤分别支持10公里和40公里10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)10GBASE-T-- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。100Gbps以太网参见:100G以太网新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。使用附加标准IEEE 802.3ba。40GBASE-KR4 -- 背板方案,最少距离1米。40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。100GBASE-ER4 -- 使用单模光纤,距离超过40公里。 [2]经典以太网播报编辑经典以太网用一个长电缆蜿蜒围绕着建筑物,这根电缆连接着所有的计算机。经典以太网的体系结构如下图《以太网》所示:以太网物理层以太网的每个版本都有电缆的最大长度限制(即无须放大的长度),这个范围内的信号可以正常传播,超过这个范围信号将无法传播。为了允许建设更大的网络,可以用中继器把多条电缆连接起来。中继器是一个物理层设备,它能接收、放大并在两个方向上重发信号。 [1]在这些电缆上,信息的发送使用曼彻斯特编码。 [1]MAC子层经典以太网使用1-坚持CSMA/CD算法,即当站有帧要发送时要侦听介质,一旦介质变为空闲便立即发送。在它们发送的同时监测信道上是否有冲突。如果有冲突,则立即终止传输,并发出一个短冲突加强信号,再等待一段随机时间后重发。 [1]交换式以太网播报编辑以太网的发展很快,从单根长电缆的典型以太网结构开始演变。单根电缆存在的问题,比如找出断裂或者松动位置等连接相关的问题,驱使人们开发出一种不同类型的布线模式。在这种模式中,每个站都有一条专用电线连接到一个中央集线器。集线器只是在电气上简单地连接所有连接线,就像把它们焊接在一起。集线器不能增加容量,因为它们逻辑上等同于单根电缆的经典以太网。随着越来越多的站加入,每个站获得的固定容量共享份额下降。最终,LAN将饱和。 [1]还有另一条出路可以处理不断增长的负载:即交换式以太网。交换式以太网的核心是一个交换机,它包含一块连接所有端口的高速背板。从外面看交换机很像集线器,它们都是一个盒子,通常拥有4-48个端口,每个端口都有一个标准的RJ-45连接器用来连接双绞电缆。交换机只把帧输出到该帧想去的端口。通过简单的插入或者拔出电缆就能完成添加或者删除一台机器,而且由于片状电缆或者端口通常只影响到一台机器,因此大多数错误都很容易被发现。这种配置模式仍然存在一个共享组件出现故障的问题,即交换机本身的故障:如果所有站都失去了网络连接,则IT人员知道该怎么解决这个问题:更换整个交换机。 [1]交换式以太网体系结构如下:以太网结构相关技术播报编辑共享介质带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台计算机共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台计算机要发送信息时,在以下行动与状态之间进行转换:1.开始- 如果线路空闲,则启动传输,否则跳转到第4步。2.发送- 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。3.成功传输- 向更高层的网络协议报告发送成功,退出传输模式。4.线路繁忙- 持续等待直到线路空闲。5.线路空闲- 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。6.超过最大尝试传输次数- 向更高层的网络协议报告发送失败,退出传输模式。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有计算机。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。中继器因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。集线器采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。以太网交换机播报编辑测试项目性能指标使用专用的以太网测试仪器进行测试,这些性能指标的测试结果还可以评估LAN系统是否满足验收要求。从GBT21671-2008“基于以太网的LAN系统验收评估规范”可以了解到局域网还可以通过测量诸如网络吞吐量,传输延迟和丢包率等性能指标来判断性能。以太网测试仪是一 款适合现场使用的坚固耐用的测试平台。它具有完整的以太网测试功能,双光口和双电口,以太网服务接口模块,HST-3000支持多种数据流测试。包括10/100/1000M以太网链路的流量生成和故障排除,它可以测试高达1Gbit/s的电气和光纤端口链路。由于验收检查中的各种条件的限制,可以支持点对点或路由网络的测试以用于交换机的例行测试。 [3]存在的问题现代测试仪器的整体特性是高可靠性,高性能和高适用性。因此,国内测试产品与国外产品之间的差距反映在这方面。虽然国内某些测试设备在一定的性能指标上接近国际先进水平,但具有达到国际标准的综合设备性能指标的产品普遍较少。此外,国内测试仪器大多是常见的规格,不能满足某些特殊环境下的测试工作。低度自动化测试也是一个常见问题。 [3]交换机测试技术如今,交换机以应用需求为向导对交换机的性能提出了新的要求。在网络综合服务、安全性、智能化等方面有了新的发展。协议测试是一种基本交换机测试技术,网络协议是为了提高测试的效率和沟通的有效性提出的为了保障通信的规则。在网络通信日益膨胀的年代,网络协议也必不可少,网络协议的基本要求是功能正确、互通性好和性能优越。协议测试最初的原型为软件测试,主要的分类有黑盒测试、白盒测试和灰盒测试。 [3]存在的问题播报编辑吞吐量是以太网测试的一项重要指标。很多工程师认为以太网交换吞吐量应该为其线速率,即100%流量下不能出现丢包,并且认为以太网帧间隔IFG小于96bits是非法的。但在以太网交换吞吐量及丢包率测试中,经常在线速条件下长时间误码测试会出现少量的丢包,究其原因为以太网跨时钟域架构所导致的。 [4]工业以太网技术的迅速发展和应用的同时,伴随出现了大量的网络问题。根据西门子公司提供的统计数据,网络通信故障率占70%以上,网络设备故障率不足30%。网络故障导致系统停机后,故障诊断和定位所需的时间占系统停机总时间的80%以上,而维护措施所占时间不足20%。因此网络流量实时监控和分析是工业以太网发展 和应用中面临的重大问题,实时监控和分析工业以太网网络流量,及时发现和定位网络问题对提高整个系统的稳定运行起到了至关重要的作用。 [5]车载以太网播报编辑传统以太网协议由于采用的是载波监听多路访问及冲突检测技术。因此,在数据包延时、排序和可靠性上达不到车载网络实时性要求,所以,常见的车载局域网仍是基于CAN的实时现场总线协议。但随着汽车电子技术的爆发式发展,ECU数量不断增长,影音娱乐信号也纳入车内通信,这使得高实时、低带宽的传统车载总线开始不适应汽车电 子发展趋势。 [6]国际电子电气工程师协会(IEEE)经过长期研究在2016年批准了第一个车载以太网标准 “100BASE-T1”,其基于博通公司的BroadR.Reach 解决方案,在物理层用单对非屏蔽双绞线电缆,采用更加优化的扰码算法来减弱信号相关性增加实时性,可在车内提供100Mbps高实时带宽。 [6]高速以太网在汽车干扰环境下的通信质量是 需要重点考查的问题。特别对于100BASE.T1网络采用的是非屏蔽的电缆,更容易受到电流浪涌、电磁干扰的影响,导致其性能不稳定甚至功能失效。有基于以太网物理层的一致性测试方法,用于测试信号发射设备的回波损耗、定时抖动和最大输出跌落等性能;RFC2544标准提供了以太网时延、吞吐量和丢包率等主要性能指标的测试方法; 但这些常见方法都是基于传统以太网,不支持 100BASE-TI车载以太网,并且没有考虑到车载环境的干扰特征。 [6]工业以太网播报编辑工业以太网技术源自于以太网技术,但是其本身和普通的 以太网技术又存在着很大的差异和区别。工业以太网技术本身进行了适应性方面的调整,同时结合工业生产安全性和稳定性方面的需求,增加了相应的控制应用功能,提出了符合特定工业应用场所需求的相应的解决方案。工业以太网技术在实际应用中,能够满足工业生产高效性、稳定性、实时性、经济性、智能性、扩展性等多方面的需求,可以真正延伸到实际企业生产过程中现场设备的控制层面,并结合其技术应用的特点,给予实际企业工业生产过程的全方位控制和管理,是一种非常重要的技术手段。 [7]工业以太网技术应用的优势分析如下:第一,工业以太网技术具有广泛的应用范围。以太网技术本身作为重要的基础性计算机网络技术,其本身能够兼容多种不同的编程语言。例如,常见的JAVA、C++等编程语言都支持以太网方面的应用开发。 [7]第二,工业以太网技术具有良好的应用经济性。相对于以往传统工业生产当中现场总线网卡的基础设施方面的投入,以太网的网卡成本方面具有十分显著的优势。在当前以太网技术不断发展的今天,整体以太网技术的设计、应用方面已经十分成熟。在具体技术开发方面,有着很多现有的资源和设计案例进行应用,这也进一步降低了系统的开发和推广成本,同时也让后续培训工作的开展变得更加有效率。可以说,经济性强、成本低廉、应用效率高、过渡短、方案成熟,这是工业以太网技术的一个显著优势特征。 [7]第三,工业以太网技术具有较高的通信速率。相对现场总线来说,工业以太网的通信速率较高,1Gb/s的技术应用也变得十分成熟。在当前不断增长的工业控制网络性能吞吐需求的前提下,这种速率上的优势十分明显,其能够更好地满足当前的带宽标准,是新时期现代工业生产网络工程的重要发展方向。相对上也控制网络来说,工业控制网络内部不同节点的实时数据了相对较少,但是其对于传输的实时性方面要求很高。以太网技术本身的网络负载方面有着显著的优势,这也让整个通信过程的实时性需求得到了更好的满足。良好的通信速率标准,可以进一步降低网络负荷,减少网络传输延时,从而最大限度规避忘了碰撞的概率,保障工业生产的安全性与可靠性。 [7]第四,工业以太网技术具有良好的共享能力。随着当前网络技术的不断发展和成熟化,整个互联网体系变得更加成熟,任何一个接入到网络当中的计算机,都可以实现对工业控制现场相关数据的浏览和调用,这对于远程管控应用来说具有良好的优势,同时这也超越了以往现场总线管理模式的便利性,是实现现代化工业生产管理的重要基础性依据。 [7]第五,工业以太网技术具有良好的发展空间。通过工业以太网技术的应用,整个工业网络控制系统本身会具备一个更加广阔的发展空间和前景。在后续技术改造和升级的过程中,以太网技术能够为其提供一个良好的基础平台,这种扩展性方面的优势相比于现场总线技术来说是十分明显的。与此同时,在当前人工智能等相关技术发展的环境下,网络通信质量和效率本身的标准更高,很多新通信协议的应用,这也需要工业以太网技术给予相应的支持。 [7]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

以太网(Ethernet) - 知乎

以太网(Ethernet) - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册以太网(Ethernet)以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连…查看全部内容关注话题​管理​分享​百科讨论精华视频等待回答详细内容以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。浏览量2683 万讨论量9697  帮助中心知乎隐私保护指引申请开通机构号联系我们 举报中心涉未成年举报网络谣言举报涉企虚假举报更多 关于知乎下载知乎知乎招聘知乎指南知乎协议更多京 ICP 证 110745 号 · 京 ICP 备 13052560 号 - 1 · 京公网安备 11010802020088 号 · 京网文[2022]2674-081 号 · 药品医疗器械网络信息服务备案(京)网药械信息备字(2022)第00334号 · 广播电视节目制作经营许可证:(京)字第06591号 · 服务热线:400-919-0001 · Investor Relations · © 2024 知乎 北京智者天下科技有限公司版权所有 · 违法和不良信息举报:010-82716601 · 举报邮箱:jubao@zhihu.

以太网与互联网有什么区别? - 知乎

以太网与互联网有什么区别? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册互联网计算机网络计算机科学以太网(Ethernet)以太网与互联网有什么区别?关注者433被浏览980,364关注问题​写回答​邀请回答​好问题 1​1 条评论​分享​23 个回答默认排序车小胖​网络安全等 2 个话题下的优秀答主​ 关注这是两个不同的概念,比如 互联网 Internet 、广域网 WAN、局域网LAN可以算作一类,按照区域和范围来分类。而以太网Ethernet 、ATM网、FDDI网可以算作一类,按照传输技术来分类,属于OSI参考类型的数据链路层。以太网很普及,电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分,以太网可以用在局域网、广域网、也可以用在互联网上,现在网络有以太网化的趋势,因为简单易用,造成很普及,然后就得到很好的研究,10兆带宽,100 兆,1000 兆,万兆…这就是它的速率升级图。而互联网则是由大大小小的运营商、公司、机构、用户连接起来网络的总称,里面包含以太网、ATM网、还有其它接口,如 E1/E3等等。编辑于 2016-11-27 12:27​赞同 438​​22 条评论​分享​收藏​喜欢收起​张雄杰小学自动化工程师,幼儿园工控安全工程师​ 关注1、简单来说,网络按照区域来划分,分为广域网和局域网。这只是按照使用区域大小来划分的。就像省和村的关系。2、然后在这个小区域(局域网)里建设网络,就需要使用多种标准技术,其中电气标准中规定用双绞线还是单芯线等,这个电气标准中有以太网技术、令牌环网技术、ATM网技术、帧中继技术等,不要被以太网中这个网字迷惑,把它看成技术,我们是用了CSMA/CA技术(别名:以太网技术),使用方便、网络建造简洁,以太网技术就是流传开来。3、局域网中物理网络按照以太网技术敷设完毕,还并不能通信,这个时候就需要其他技术标准,我们经常见到的TCP/IP技术,tcp/ip技术可以依托以太网技术、令牌环网技术等上使用,而且我们经常TCP/IP与以太网配合使用,所以我们日常中口语中容易将TCP/IP与以太网技术混在一起说。其实是不同层级的技术。。来波赞吧发布于 2016-08-16 11:18​赞同 453​​20 条评论​分享​收藏​喜欢

【通信知识】什么是以太网(Ethernet)?看完就明白了_哔哩哔哩_bilibili

【通信知识】什么是以太网(Ethernet)?看完就明白了_哔哩哔哩_bilibili 首页番剧直播游戏中心会员购漫画赛事投稿【通信知识】什么是以太网(Ethernet)?看完就明白了

14.1万

157

2020-07-19 00:36:39

未经作者授权,禁止转载18753303090355以太网是一种计算机局域网技术。包括物理层的连线、电子信号和介质访问层协议的内容。以太网是现实世界中最普遍的一种计算机网络。知识科学科普知识分享官科普电气知识工控知识Ehernet通讯自动化通信工业控制以太网

优睿云课堂

发消息

关注 1.5万

拒绝无用留学,提高留学生专业成绩!

接下来播放

自动连播因特网,以太网,局域网这些词到底代表什么,都是什么意思恋雪喵

4.9万

408

什么是以太网 动画演示 简单明了汽车学堂

8849

2

什么是以太网?以太网工作原理,看完你就明白了!!SPOTO思博

4672

1

什么是PLC以太网通讯?创控教育

2043

0

以太网和局域网互联网的区别是什么?COMFAST官方品牌

1821

0

什么是以太网 —— 通信基础 (中英双语字幕)元气炸鸡

6675

3

Ethernet科普上海简领科技

220

0

win11以太网无法正常连接,显示未识别的网络,无法访问Internet路咋91163

1.9万

0

什么是EthernetTwingkins

3664

1

车辆以太网与CAN的区别William_CAO

4034

0

【网络工程师】我敢保证!看完你就能明白什么是以太网,以太网的工作原理~在逃网工-阿叮

2041

32

以太网的由来和应用_屁屁酱_

1407

0

以太网之父告诉你:什么是以太网?窩窩的房间

468

0

以太网通讯与串口485通讯区别芝麻工控职业技能培训

4449

0

以太网通信协议原理阿森纳是不可战胜滴

9995

5

三分钟上手工业以太网麦客厅

333

0

只需要一对线的以太网连接麦客厅

782

0

以太网在嵌入式中应用广泛,MAC和PHY的基本知识需要掌握电子哥的日常

841

0

什么是以太网,如何准确定义啄木小鸟

2408

0

什么是以太?它与以太网有何关系?亿佰特物联网应用

1678

2

展开

小窗

客服

顶部

赛事库 课堂 2021

以太网详解(一) - 知乎

以太网详解(一) - 知乎首发于网络工程师切换模式写文章登录/注册以太网详解(一)swiers思唯网络学苑1、以太网交换简介以太网最早是指由DEC(Digital Equipment Corporation)、Intel和Xerox组成的DIX(DEC-Intel-Xerox)联盟开发并于1982年发布的标准。经过长期的发展,以太网已成为应用最为广泛的局域网,包括标准以太网(10 Mbit/s)、快速以太网(100 Mbit/s)、千兆以太网(1000 Mbit/s)和万兆以太网(10 Gbit/s)等。IEEE 802.3规范则是基于以太网的标准制定的,并与以太网标准相互兼容。在TCP/IP中,以太网的IP数据报文的封装格式由RFC894定义,IEEE802.3网络的IP数据报文封装由RFC1042定义。当今最常使用的封装格式是RFC894定义的格式,通常称为Ethernet_II或者Ethernet DIX。为区别两种帧,本文以Ethernet_II称呼RFC894定义的以太帧,以IEEE802.3称呼RFC1042定义的以太帧。早在1972年,Robert Metcalfe(被尊称为“以太网之父”)作为网络专家受雇于Xerox公司,当时他的第一个任务是把Xerox公司Palo Alto研究中心(PARC)的计算机连接到Arpanet(Internet的前身)。同年底,Robert Metcalfe设计了一套网络,把PARC的计算机连接起来。因为该网络是以ALOHA系统(一种无线电网络系统)为基础的,又连接了众多的Xerox公司Palo Alto研究中心的计算机,所以Metcalfe把它命名为ALTO ALOHA网络。ALTO ALOHA网络在1973年5月开始运行,Metcalfe把这个网络正式命名为以太网(Ethernet),这就是最初的以太网试验原型,该网络运行速率为2.94Mbps,网络运行的介质为粗同轴电缆。1976年6月,Metcalfe和他的助手David Boggs发表了一篇名为《以太网:区域计算机网络的分布式包交换技术》(Ethernet: Distributed Packet Switching for Local Computer Networks)的文章。1977年底,Metcalfe和他的三位合作者获得了“具有冲突检测的多点数据通信系统”("Multipoint data communication system with collision detection")的专利。从此,以太网就正式诞生了。经过多年的技术发展,以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。以太网是当今现有局域网LAN(Local Area Network)采用的最通用的通信协议标准。该标准定义了在局域网中采用的电缆类型和信号处理方法。以太网是建立在CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如HUB是物理层设备,不能隔绝冲突扩散,限制了网络性能的提高。而交换机做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能,并替代HUB成为主流的以太网设备。然而交换机对网络中的广播数据流量不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用L3交换机可解决这一问题。以太网作为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的千兆以太网和万兆以太网的出现更使其成为最有前途的网络技术。2、以太网的网络层次以太网采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。2.1、物理层物理层规定了以太网的基本物理属性,如数据编码、时标、电频等。物理层位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体(即通信通道),物理层的传输单位为比特(bit),即一个二进制位(“0”或“1”)。实际的比特传输必须依赖于传输设备和物理媒体,但是,物理层不是指具体的物理设备,也不是指信号传输的物理媒体,而是指在物理媒体之上为上一层(数据链路层)提供一个传输原始比特流的物理连接。2.2、数据链路层数据链路层是OSI参考模型中的第二层,介于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源设备网络层转发过来的数据可靠地传输到相邻节点的目的设备网络层。由于以太网的物理层和数据链路层是相关的,针对物理层的不同工作模式,需要提供特定的数据链路层来访问。这给设计和应用带来了一些不便。为此,一些组织和厂家提出把数据链路层再进行分层,分为媒体接入控制子层(MAC)和逻辑链路控制子层(LLC)。这样不同的物理层对应不同的MAC子层,LLC子层则可以完全独立。图1 以太网链路层的分层结构如上图1所示。下面的章节将就物理层和数据链路层的相关概念做进一步的阐述。3、以太网的线缆标准从以太网诞生到目前为止,成熟应用的以太网物理层标准主要有以下几种:10BASE-210BASE-510BASE-T10BASE-F100BASE-T4100BASE-TX100BASE-FX1000BASE-SX1000BASE-LX1000BASE-TX10GBASE-T10GBASE-LR10GBASE-SR在这些标准中,前面的10、100、1000、10G分别代表运行速率,中间的BASE指传输的信号是基带方式。3.1、10兆以太网线缆标准10兆以太网线缆标准在IEEE802.3中定义,线缆类型如下表1所示。同轴电缆的致命缺陷是:电缆上的设备是串连的,单点故障就能导致整个网络崩溃。10BASE-2,10BASE-5是同轴电缆的物理标准,现在已经基本被淘汰。3.2、100兆以太网线缆标准100兆以太网又叫快速以太网FE(Fast Ethernet),在数据链路层上跟10M以太网没有区别,仅在物理层上提高了传输的速率。快速以太网线缆类型如下表2所示。10BASE-T和100BASE-TX都是运行在五类双绞线上的以太网标准,所不同的是线路上信号的传输速率不同,10BASE-T只能以10M的速度工作,而100BASE-TX则以100M的速度工作。100BASE-T4现在很少使用。3.3、千兆以太网线缆标准千兆以太网是对IEEE802.3以太网标准的扩展。在基于以太网协议的基础之上,将快速以太网的传输速率从100Mbit/s提高了10倍,达到了1Gbit/s。千兆以太网线缆标准如下表3所示。用户可以采用这种技术在原有的快速以太网系统中实现从100Mbit/s到1000Mbit/s的升级。千兆以太网物理层使用8B10B编码。在传统的以太网传输技术中,数据链路层把8位数据组提交到物理层,物理层经过适当的变换后发送到物理链路上传输。但变换的结果还是8比特。在光纤千兆以太网上,则不是这样。数据链路层把8比特的数据提交给物理层的时候,物理层把这8比特的数据进行映射,变换成10比特发送出去。3.4、万兆以太网线缆标准万兆以太网当前使用附加标准IEEE 802.3ae用以说明,将来会合并进IEEE 802.3标准。万兆以太网线缆标准如下表4所示。3.5、100Gbps以太网线缆标准新的40G/100G以太网标准在2010年制定完成,当前使用附加标准IEEE 802.3ba用以说明。随着网络技术的发展,100Gbps以太网在未来会有大规模的应用。4、CSMA/CD根据以太网的最初设计目标,计算机和其他数字设备是通过一条共享的物理线路连接起来的。这样被连接的计算机和数字设备必须采用一种半双工的方式来访问该物理线路,而且还必须有一种冲突检测和避免的机制,以避免多个设备在同一时刻抢占线路的情况,这种机制就是所谓的CSMA/CD(Carrier Sense Multiple Access/Collision Detection)。可以从以下三点来理解CSMA/CD:1、CS:载波侦听在发送数据之前进行侦听,以确保线路空闲,减少冲突的机会。2、MA:多址访问每个站点发送的数据,可以同时被多个站点接收。3、CD:冲突检测由于两个站点同时发送信号,信号叠加后,会使线路上电压的摆动值超过正常值一倍。据此可判断冲突的产生。边发送边检测,发现冲突就停止发送,然后延迟一个随机时间之后继续发送。CSMA/CD的工作过程如下:终端设备不停的检测共享线路的状态。如果线路空闲则发送数据;如果线路不空闲则一直等待。如果有另外一个设备同时发送数据,两个设备发送的数据必然产生冲突,导致线路上的信号不稳定。终端设备检测到这种不稳定之后,马上停止发送自己的数据。终端设备发送一连串干扰脉冲,然后等待一段时间之后再进行发送数据。发送干扰脉冲的目的是为了通知其他设备,特别是跟自己在同一个时刻发送数据的设备,线路上已经产生了冲突。检测到冲突后等待的时间是随机的。发布于 2020-12-25 14:12计算机网络以太网(Ethernet)数据通信​赞同 27​​2 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录网络

关于以太网的几个基本知识 - 知乎

关于以太网的几个基本知识 - 知乎切换模式写文章登录/注册关于以太网的几个基本知识仓浪水01.什么是以太网以太网即Ethernet,它的英文名称由“ether”和“net”组成。“以太”这个词,原来是带有神秘色彩的词语,用来描述一些理想性质的物质。在计算机通信起初的时代,局域网存在着多种标准,他们之间几乎不存在互通的可能。为了打破这种限制,美国施乐公司提出了一种比较简单但是比较高效的局域网标准,称为“施乐以太网”。1982年,Xerox与DEC及Intel组成DIX联盟,正式发布了以太网标准,称为Ethernet Version 2(EV2)的规格。不久后,IEEE也正式采纳了这种称呼。以太网一经发布,就引起了很多厂商的参与,其传输速率也逐步增加,总最初的<3Mbps,发展到今天的400Gbps。根据其是否可以同时发送和接收,可以分为单工、半双工、全双工。现代运营商的骨干网络中,以太网基本上是唯一的传输技术,取代了曾经在长途传输网络中使用的PPP和HDLC技术。02.发送和冲突0MAC地址和以太网帧关的标准,其工作原理称为CSMA/CD——载波侦听多址访问冲突检测。以太网上的任何一台设备,在发送数据前,都要先侦听网络中是否存在冲突。这里说的冲突,意思是网络中是否有其他设备正在发送数据。如果存在其他正在发送数据的设备,则表示当前时间内网络中存在冲突,要延后一段时间再发送。这就是所说的冲突域。以太网是一种泛洪型网络,即同一个以太网上的主机发送的数据,可以被其他所有的主机接收到,也可以接收任何其他主机发送的数据。数据包能够被接收的范围,被定义为一个广播域。所以,冲突域是基于信号的发送/接收来定义的,广播域是基于数据的发送/接收来定义的。03.MAC地址和以太网帧MAC地址格式以太网中用来标识以太主机的位置,使用的是MAC地址。MAC地址格式如上图表示的那样。总共6字节,前3字节由IEEE管理,以块为单位进行分配。一个组织(一般是制造商)从IEEE获得唯一的地址块,称为一个组织的OUI(Organizationally Unique Identifier),后3字节由厂商自己分配。比如IANA申请的OUI为00-00-5e和01-00-5e,前一个我们在VRRP等协议中就可以见到,后一个在进行组播映射的时候会用到。MAC地址的最高字节(设备上显示的时候,从左边数第一个字节)的最低位(设备上显示的时候,左边第一个字节的最右边的bit)是组播标识位,当设置为1时,表示这是一个组播MAC。最高字节的次最低位是局部标识位,当设置为1时,表示这个MAC地址是局部地址,其他地方可能存在相同的MAC地址。因此,一般情况下,MAC地址最高字节的最低位和次最低位都是0,最高字节的值从0x00~0xFC。以太网的帧格式,由于一些历史的问题,存在多种组织顺序。Ethernet V2格式上面这是最原始的格式,我们现在经常见到的格式就是这个格式。Novell Ethernet格式这种格式也称之为【RAW 802.3】标准。这是1983年Novell公司为抢在IEEE标准之前所发布的以太网帧格式。与原始格式不同的是,将Type字段换成了Length字段,而在data字段的前2个字节固定为0xFFFF,用于标识这是Novell的帧,这样就导致data只有44~1498字节长。这种格式只支持IPX/SPX一种上层协议。在cisco设备上,这种格式会标注为Novell-Ether。IEEE802.3格式一这是IEEE 正式的802.3标准格式,它由Ethernet V2发展而来。它将Ethernet V2帧头的协议类型字段替换为帧长度字段(取值为0000~05dc;十进制为0~1500),如此一来,丧失了与Ethernet V2的兼容性,并且导致只能封装一种上层服务,即LLC;而用802.2 LLC头来标志上层协议。LLC头中包含DSAP(1B),SSAP(1B)以及Crontrol(1B)字段。STP协议使用的就是这种格式,以太网OAM使用的也多是这种格式。IEEE802.3格式二这是IEEE为保证在802.2 LLC上支持更多的上层协议,同时更好的支持IP协议而在1985年发布的标准,其与一样也带有LLC头,但是扩展了LLC属性,新添加了一个2Bytes的协议类型域(同时将SAP的值置为AA),从而使其可以标识更多的上层协议类型;另外添加了一个3Bytes的OUI字段用于代表不同的组织,RFC 1042定义了IP报文在802.2网络中的封装方法和ARP协议在802.2 SANP中的实现.。在Cisco设备上用名称SNAP来表示这种格式。IEEE802.3修订格式这是IEEE在1997年对其发布的格式进行修订后的帧格式,将Length和Type字段放到一个字段域,当此域的值大于十进制1536(十六进制0x0600)时为Type字段,否则为Length。以上是现在常见的以太网帧格式。对比可以看出,802.3的格式下,最大可以携带的数据长度为1497或者1492,而ethernet v2可以携带的数据长度最大是1500,因此可以说ethernet V2的传输速率会大于802.3格式的帧。但是由于802.3加入了LLC子层,可以携带控制码,因此可以对2层的流量进行有效控制。04.PAUSE帧和Jumbo帧从上面的帧格式也看到,以太网帧的最后都有一个FCS字段,用来对数据进行校验,避免在传输中出错。但是,只对数据进行校验,在实际应用中可能不太满足需求,还需要对发送的流量进行控制,避免发送和接收不匹配导致的数据丢失和拥塞。拥塞控制使用单独的帧来实现。在全双工模式下,使用PAUSE帧来实现拥塞控制。PAUSE帧的长度固定为64字节(包括CRC),PAUSE帧的目的MAC为组播MAC:0180-c200-0001,源MAC为发送PAUSE帧的节点的MAC,LENTH/TYPE字段固定为0x8808。半双工模式下,根据CSMA/CD的机制,接收段制造一次冲突的假象,其他发送端收到这样的假象后,自然就会暂停数据的发送。由于以太网帧的最大数据长度为1500字节,在某些情况下,如果需要发送的数据大于1500字节,则需要对数据段进行分片。但是,这样来做就会降低数据传输效率。为了能突破1500字节的限制,以太网中引入了jumbo帧的概念。Jumbo帧不是一个新的概念,它只是对超长帧的表示。发布于 2023-08-15 19:15・IP 属地北京以太网(Ethernet)计算机网络MAC地址​赞同 1​​添加评论​分享​喜欢​收藏​申请

什么是以太网?以太网的工作原理和用途 - 光路科技官方网站

什么是以太网?以太网的工作原理和用途 - 光路科技官方网站

产品中心

工业以太网交换机工业导轨网管交换机工业导轨非管理交换机工业机架网管交换机商用PoE交换机Bypass交换机串口交换机

行业交换机TSN交换机Auto Pro系列矿用本安型交换机电力专用交换机

工业无线

光纤收发器商用MINI光纤收发器商用PoE光纤收发器工业级PoE光纤收发器网管型光纤收发器

网络管理系统交换机云管理平台PC网络管理系统WebGUI管理

智能监控设备箱E系列智能设备箱F系列智能设备箱K系列智能设备箱智能运维管理平台

解决方案

平安城市

智慧工厂

城市污水监控

智能交通

高速公路监控

综合管廊

智慧矿山

TSN网络

关于我们

关于光路

企业文化

发展历程

资质证书

联系我们

资源市场资讯技术资讯实例探究技术支援在线留言

EN

English

什么是以太网?以太网的工作原理和用途

技术资讯

2023-01-13

Fiberroad

已复制文章链接去分享吧

微信扫码分享

已复制网页链接快去微信分享吧

什么是以太网?

以太网是一种网络技术,包括将台式机或笔记本电脑插入局域网 (LAN) 所需的协议、端口、电缆和计算机芯片,通过同轴或光纤电缆快速传输数据。

以太网是Xerox在1970年开发的一种通信技术,它通过有线连接,连接网络中的计算机。它连接局域网(LAN) 和广域网(WAN)系统。借助 LAN 和 WAN,打印机和笔记本电脑等多种设备可以跨建筑物、住宅甚至小型社区连接。

它提供了一个简单的用户界面,便于连接多个设备,包括以太网交换机、路由器和 PC。只需一个路由器和几个以太网连接,就可以构建局域网(LAN),使用户能够在所有连接的设备之间进行通信。这是因为笔记本电脑具有以太网连接器,电缆插入其中,另一端连接到路由器。

在建立以太网连接时,大多数以太网设备与慢速设备兼容,但是连接速度将由最弱的组件决定。

无线网络在许多地方已经取代了以太网,但后者在有线网络中仍然更加普遍。有线网络比无线网络更可靠,更不容易受到干扰。这是许多企业和组织继续采用以太网的主要原因。

以太网在 1998 年庆祝成立 25 周年,随着技术的进步,它经历了多次修订。以太网随着其功能的扩展和发展而不断重新设计。今天,它是全球使用最广泛的网络技术之一。

以太网是如何演变的?

以太网于 1970 年初在Xerox Palo Alto Research Center(PARC)由包括David Boggs和Robert Metcalfe在内的一个小组创建。1983年, IEEE将其批准为标准。

Robert Metcalfe在1973年为Xerox PARC撰写的一份文件中提出了以太网的概念,标志着以太网发展的开始。Robert Metcalfe基于Aloha系统构建了以太网,这是1968年在夏威夷大学开始的一项早期网络计划。他在1973年确定该技术已经超越了其最初的名称Alto Aloha Network,并将其更名为以太网。

Metcalfe和Boggs以及他们在Xerox公司的同事Charles Thacker和Butler Lampson将在四年后成功地为以太网技术注册商标。

1980年,Xerox与Digital Equipment Corporation和Intel合作创建了第一个10 Mbps以太网标准。与此同时,IEEE局域网和城域网(LAN/MAN)标准委员会着手制定等效的开放标准。LAN/MAN 委员会成立了一个以太网小组委员会,名称为 802.3。IEEE于1983年通过了第一个以太网802.3标准,并于1985年正式发布。

以太网如何工作?

以太网的工作原理是怎样的?以太网协议采用星形拓扑或线性总线,这是 IEEE 802.3 标准的基础。在 OSI 网络结构中,此协议在物理层和数据链路层(前两个级别)工作。以太网将数据连接层分为两个不同的层:逻辑链路控制层和介质访问控制 (MAC)层。

网络系统中的数据连接层主要关注将数据包从一个节点传输到另一个节点。以太网采用称为 CSMA/CD(载波检测多址/冲突检测)的访问机制,使每台计算机能够在通过网络传输数据之前侦听连接。

以太网还使用两个组件传输数据:数据包和帧。帧包含发送的数据有效负载以及以下内容:

发件人和收件人的 MAC 和物理地址用于识别传输故障的纠错数据有关虚拟局域网 (VLAN) 标记以及服务质量 (QoS) 的信息

每个帧都封装在包含许多字节数据的数据包中,以设置连接并标识帧的起始点。

以太网连接的关键组件

以太网连接包括以下内容:

以太网协议:该协议由Xerox公司在 1970 年开发。如前所述,它是一系列标准,用于控制以太网组件之间如何发送数据。以太网端口:以太网端口是计算机网络基础设施上的开口,可以插入以太网电缆。它支持带有 RJ-45 连接器的电缆。大多数计算机上的以太网连接器用于将设备连接到有线连接。计算机的以太网端口链接到安装在主板上的以太网网络适配器(也称为以太网卡)。路由器可能包含许多以太网端口,以支持各种有线网络设备。以太网网络适配器:以太网适配器是适合主板上的插槽并允许计算机连接到局域网 (LAN) 的芯片或卡。过去,这些总是与台式计算机一起使用。以太网现已集成到笔记本电脑和台式机主板的芯片组中。以太网电缆:以太网电缆(通常称为网络电缆)将计算机连接到调制解调器、路由器或以太网交换机。 以太网电缆由 RJ45 连接、内部电缆和塑料护套组成。

以太网的主要用途

以太网现在已成为当今高度互联的数字世界中几乎无处不在的技术。这是因为它:

改善消费者的互联网体验:当他们的无线Wi-Fi数据连接速度不足时,家中的许多人会部署以太网连接。以太网通常用于链接局域网 (LAN) 和广域网 (WAN) 中的多个设备。提供高带宽连接:以太网提供每秒 10、100、1000、10000、40000 和 100000 兆(Mbps) 的数据传输速率。最初创建以太网时,频段以兆每秒(Mbps) 为单位定义,但目前以千兆位每秒 (Gbps) 计算。根据预算、区域和要求提供不同的速度选项:标准以太网的最高速度为 10Mbps,而快速以太网的最高速度为 100Mbps,千兆以太网的最高速度为 1Gbps,而 10 Gb 以太网的最高速度为 10Gbps。在成本和性能之间取得平衡:以太网因其实惠的价格和与任何后续网络设备的兼容性而被广泛使用。以太网速度在1983年约为10Mbps,现在超过400Gbps。以太网因其快速的速度、网络安全和可靠性而被公司、医院、学校、大学和工业领域广泛使用。增强 Wi-Fi 网络的功能:近年来,Wi-Fi 变得越来越流行。由于技术改进,Wi-Fi提高了速度并提供广泛的覆盖范围。Wi-Fi 传输只能同时支持有限数量的设备。在频繁具有Wi-Fi盲区的旧建筑物中,以太网连接是必不可少的。实施更高的安全性:以太网具有比 Wi-Fi 更安全的优势。Wi-Fi 热点范围内的任何人都可以访问通过无线电传输的数据。由于无线电信号传递信息,因此很容易被盗。相比之下,以太网提供的数据只能在局域网上访问。支持直流(DC)电力传输:顾名思义,以太网供电 (POE) 是通过以太网连接提供能源供应。它为许多设备供电,包括闭路电视摄像机和无线接入点。以太网供电的主要优点之一是不需要不同的电源。这对于将设备放置在远离最近电源的位置特别有用。

即使在高速无线连接时代,特别是随着Wi-Fi 6的出现,以太网仍然具有相关性。对于许多地区来说,它仍然是获得互联网接入的最佳方式,大多数家庭都有连接到路由器或集线器的以太网连接。以太网交换机市场尽管已经存在多年,但仍在不断增长。对于企业而言,以太网是网络基础设施的重要组成部分。通过了解以太网的工作原理,您可以优化有线互联网连接的功能。

上一篇:什么是LLDP和LLDP-MED ? 下一篇:虚拟网络的工作原理以及对云计算、VLAN和VPN的增强猜你喜欢以太网交换机坏了,能否使用光纤收发器来替代?2023-12-22PoE以太网交换机与PoE以太网集线器如何选?2023-03-21工业以太网交换机光功率预算:设计、应用和注意事项2023-11-27虚拟网络的工作原理以及对云计算、VLAN和VPN的增强2023-02-28以太网交换机市场规模2030年将达68亿美元2022-09-28选购以太网交换机时,交换机口数越多越好吗?2023-07-22推荐阅读什么是确定性网络?2024-01-11Auto Pro系列工业交换机 - 您的专业级自动化通信解决方案2023-11-23光路科技工业以太网交换机通过国网权威检测2023-09-26TSN技术在煤矿行业的应用前景 TSN工业交换机即将发力2023-09-13光路科技工业交换机助力智利5G网络建设2022-12-01光路科技bypass光旁路工业交换机助力宜昭高速智慧建设2022-08-11近期文章光路科技将参加第二十六届CEIC“高速展” 智慧高速新时代即将开启2024-03-08IEEE 802.1Qbv:实时网络通信的关键技术2024-02-29光路科技工业以太网交换机:工业互联网的稳定基石与智能引擎2024-02-285G时代,光路科技FR-TSN系列交换机引领工业互联网革新2024-02-23工业以太网交换机的冗余技术与备份技术2024-02-222024光路科技年会盛典:欢乐游戏,丰厚奖品,共赴美好未来!2024-01-27探索接入网技术发展趋势和工业以太网交换机作用2024-01-24网络可靠性的关键:确定性网络技术和TSN技术2024-01-12

以太网交换机工业环网交换机工业导轨网管交换机工业导轨非管理交换机工业机架网管交换机商用智能PoE交换机Bypass交换机

行业交换机TSN交换机Auto Pro系列矿用本安型交换机电力交换机工业无线系列

光纤收发器商用MINI光纤收发器商用PoE光纤收发器工业级PoE光纤收发器集中管理型收发器

解决方案平安城市智慧工厂城市污水监控智能交通高速公路监控智慧矿山综合管廊

支持技术支援联系我们隐私政策招贤纳士

联系我们广东省深圳市龙岗区坂田街道大发路龙壁工业区7栋4层+86 0755-83125459sales@fiberroad.com.cn直接留言

©2022 深圳市光路在线科技有限公司粤ICP备17018220号

扫码一对一咨询

在线留言

返回顶部

angle-upangle-downquestion-circle-oenvelopephone-handsetmap-marker

网络工程师必懂的以太网基础知识 - 知乎

网络工程师必懂的以太网基础知识 - 知乎首发于网络民工切换模式写文章登录/注册网络工程师必懂的以太网基础知识网络民工网络技术更多内容请关注 微信公众号:网络民工前言以太网最早是指由DEC(Digital Equipment Corporation)、Intel和Xerox组成的DIX(DEC-Intel-Xerox)联盟开发并于1982年发布的标准。经过长期的发展,以太网已成为应用最为广泛的局域网,包括标准以太网(10 Mbit/s)、快速以太网(100 Mbit/s)、千兆以太网(1000 Mbit/s)和万兆以太网(10 Gbit/s)等。IEEE 802.3规范则是基于以太网的标准制定的,并与以太网标准相互兼容。在TCP/IP中,以太网的IP数据报文的封装格式由RFC894定义,IEEE802.3网络的IP数据报文封装由RFC1042定义。当今最常使用的封装格式是RFC894定义的格式,通常称为Ethernet_II或者Ethernet DIX。01 以太网基础知识1.1 以太网的网络层次以太网采用无源的介质,按广播方式传播信息。它规定了物理层和数据链路层协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。物理层物理层规定了以太网的基本物理属性,如数据编码、时标、电频等。物理层位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体(即通信通道),物理层的传输单位为比特(bit),即一个二进制位(“0”或“1”)。实际的比特传输必须依赖于传输设备和物理媒体,但是,物理层不是指具体的物理设备,也不是指信号传输的物理媒体,而是指在物理媒体之上为上一层(数据链路层)提供一个传输原始比特流的物理连接。数据链路层数据链路层是OSI参考模型中的第二层,介于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源设备网络层转发过来的数据可靠地传输到相邻节点的目的设备网络层。由于以太网的物理层和数据链路层是相关的,针对物理层的不同工作模式,需要提供特定的数据链路层来访问。这给设计和应用带来了一些不便。为此,一些组织和厂家提出把数据链路层再进行分层,分为媒体接入控制子层(MAC)和逻辑链路控制子层(LLC)。这样不同的物理层对应不同的MAC子层,LLC子层则可以完全独立。如图1-1所示。图1-1 以太网链路层的分层结构1.2 以太网的线缆标准从以太网诞生到目前为止,成熟应用的以太网物理层标准主要有以下几种:10BASE-210BASE-510BASE-T10BASE-F100BASE-T4100BASE-TX100BASE-FX1000BASE-SX1000BASE-LX1000BASE-TX10GBASE-T10GBASE-LR10GBASE-SR在这些标准中,前面的10、100、1000、10G分别代表运行速率,中间的BASE指传输的信号是基带方式。10兆以太网线缆标准10兆以太网线缆标准在IEEE802.3中定义,线缆类型如表1-1所示。表1-1 10兆以太网线缆标准同轴电缆的致命缺陷是:电缆上的设备是串连的,单点故障就能导致整个网络崩溃。10BASE-2,10BASE-5是同轴电缆的物理标准,现在已经基本被淘汰。100兆以太网线缆标准100兆以太网又叫快速以太网FE(Fast Ethernet),在数据链路层上跟10M以太网没有区别,仅在物理层上提高了传输的速率。快速以太网线缆类型如表1-2所示。表1-2 快速以太网线缆标准10BASE-T和100BASE-TX都是运行在五类双绞线上的以太网标准,所不同的是线路上信号的传输速率不同,10BASE-T只能以10M的速度工作,而100BASE-TX则以100M的速度工作。100BASE-T4现在很少使用。千兆以太网线缆标准千兆以太网是对IEEE802.3以太网标准的扩展。在基于以太网协议的基础之上,将快速以太网的传输速率从100Mbit/s提高了10倍,达到了1Gbit/s。千兆以太网线缆标准如表1-3所示。表1-3 千兆以太网线缆标准用户可以采用这种技术在原有的快速以太网系统中实现从100Mbit/s到1000Mbit/s的升级。千兆以太网物理层使用8B10B编码。在传统的以太网传输技术中,数据链路层把8位数据组提交到物理层,物理层经过适当的变换后发送到物理链路上传输。但变换的结果还是8比特。在光纤千兆以太网上,则不是这样。数据链路层把8比特的数据提交给物理层的时候,物理层把这8比特的数据进行映射,变换成10比特发送出去。万兆以太网线缆标准万兆以太网当前使用附加标准IEEE 802.3ae用以说明,将来会合并进IEEE 802.3标准。万兆以太网线缆标准如表1-4所示。表1-4 万兆以太网线缆标准100Gbps以太网线缆标准新的40G/100G以太网标准在2010年制定完成,当前使用附加标准IEEE 802.3ba用以说明。随着网络技术的发展,100Gbps以太网在未来会有大规模的应用。1.3 CSMA/CDCSMA/CD的概念根据以太网的最初设计目标,计算机和其他数字设备是通过一条共享的物理线路连接起来的。这样被连接的计算机和数字设备必须采用一种半双工的方式来访问该物理线路,而且还必须有一种冲突检测和避免的机制,以避免多个设备在同一时刻抢占线路的情况,这种机制就是所谓的CSMA/CD(Carrier Sense Multiple Access/Collision Detection)。可以从以下三点来理解CSMA/CD:CS:载波侦听在发送数据之前进行侦听,以确保线路空闲,减少冲突的机会。MA:多址访问每个站点发送的数据,可以同时被多个站点接收。CD:冲突检测由于两个站点同时发送信号,信号叠加后,会使线路上电压的摆动值超过正常值一倍。据此可判断冲突的产生。边发送边检测,发现冲突就停止发送,然后延迟一个随机时间之后继续发送。CSMA/CD的工作过程CSMA/CD的工作过程如下:如果线路空闲则发送数据。如果线路不空闲则一直等待。终端设备不停的检测共享线路的状态。如果有另外一个设备同时发送数据,两个设备发送的数据必然产生冲突,导致线路上的信号不稳定。终端设备检测到这种不稳定之后,马上停止发送自己的数据。终端设备发送一连串干扰脉冲,然后等待一段时间之后再进行发送数据。发送干扰脉冲的目的是为了通知其他设备,特别是跟自己在同一个时刻发送数据的设备,线路上已经产生了冲突。检测到冲突后等待的时间是随机的。1.4 最小帧长由于CSMA/CD算法的限制,以太网帧必须不能小于某个最小长度。以太网中,最小帧长为64字节,这是由最大传输距离和冲突检测机制共同决定的。规定最小帧长是为了避免这种情况发生:A站点已经将一个数据包的最后一个Bit发送完毕,但这个报文的第一个Bit还没有传送到距离很远的B站点。B站点认为线路空闲继续发送数据,导致冲突。图1-2 Ethernet_II的帧结构高层协议必须保证Data域至少包含46字节,这样加上以太网帧头的14字节和帧尾的4字节校验码正好满足64字节的最小帧长,如图1-2所示。如果实际数据不足46个字节,则高层协议必须填充一些数据单元。1.5 以太网的双工以太网的物理层存在半双工和全双工两种模式。半双工半双工的工作模式:任意时刻只能接收数据或者发送数据。采用CSMA/CD机制。有最大传输距离的限制。HUB工作在半双工模式。全双工在有L2交换机取代了HUB组建以太网后,以太网由共享式转变为交换式。而且用全双工代替了半双工,传输数据帧的效率大大提高,最大吞吐量达到双倍速率。全双工从根本上解决了以太网的冲突问题,以太网从此告别CSMA/CD。全双工的工作模式:同一时刻可以接收和发送数据。最大吞吐量达双倍速率。消除了半双工的物理距离限制。当前制造的网卡、二层设备、三层设备都支持全双工模式,HUB除外。实现全双工的硬件保证:支持全双工的网卡芯片收发线路完全分离的物理介质点到点的连接1.5 以太网的自协商自动协商的目的最早的以太网都是10M半双工的,所以需要CSMA/CD等一系列机制保证系统的稳定性。随着技术的发展,出现了全双工,接着又出现了100M,以太网的性能大大改善。但是随之而来的问题是:如何保证原有以太网络和新以太网的兼容?于是,提出了自动协商技术来解决这种矛盾。自动协商的主要功能就是使物理链路两端的设备通过交互信息自动选择同样的工作参数。自动协商的内容主要包括双工模式、运行速率以及流控等参数。一旦协商通过,链路两端的设备就锁定在同样的双工模式和运行速率。以太网速率双工自协商在如下标准中定义:百兆以太网标准:IEEE 802.3uIEEE 802.3u规范将自协商作为可选功能。千兆以太网标准:IEEE 802.3zIEEE 802.3z规范将自协商作为强制功能,所有设备必须遵循并且必须默认启用自协商。自动协商原理自动协商是网络设备间建立连接的一种方式。它允许一个网络设备将自己所支持的工作模式信息传达给网络上的对端,并接受对端可能传递过来的信息。设备双方根据彼此工作模式信息的交集,按照双方都支持的最优工作模式建立连接。对于使用双绞线连接的以太网,如果没有数据传输时,链路并不是一直空闲,而是每隔16ms发送一个高脉冲,用来维护链路层的连接,这种脉冲成为NLP(Normal Link Pulse)码流。在NLP码流中再插入一些频率更高的脉冲,可用来传递更多的信息,这串脉冲成为FLP(Fast Link Pulse)码流,如图1-3所示。自协商功能的基本机制就是将协商信息封装进FLP码流中,以达到自协商的目的。图1-3 脉冲插入示意图对于使用光模块和光纤连接的以太网,与使用双绞线连接的以太网类似,也是靠发送码流来进行自协商的,这种码流称为C码流,也就是配置(Configuration)码流。与电口不同的是,光口一般不协商速率,并且一般工作在双工模式,所以自协商一般只用来协商流控。如果协商通过,网卡就把链路置为激活状态,可以开始传输数据了。如果不能通过,则该链路不能使用。如果有一端不支持自动协商,则支持自动协商的一端选择一种默认的方式工作,一般情况下是10M半双工模式。自协商完全由物理层芯片设计实现,IEEE 802.3规范要求在下列任一情况下启动自协商:链路中断后恢复设备重新上电任何一端设备复位有重新自协商(Renegotiation)请求除此之外,连接双方并不会一直发送自协商码流。自协商并不使用专用数据包或带来任何高层协议开销。接口的自动协商规则当接口对接时,双方能否正常通信和两端接口设置的工作模式是否匹配相关。当两端接口都工作在相同类型的非自协商模式时,双方可以正常通信。当两端接口都工作在自协商模式时,双方通过协商可以正常通信,最终的协商结果取决于能力低的一端,通过自协商功能还可以协商流量控制功能。当两端接口一端的工作模式为自协商,对端为非自协商时,接口最终协商的工作模式和对端设置的工作模式相关。1.6 冲突域和广播域冲突域在传统的以粗同轴电缆为传输介质的以太网中,同一介质上的多个节点共享链路的带宽,争用链路的使用权,这样就会发生冲突,CSMA/CD机制中当冲突发生时,网络就要进行回退,这段回退的时间内链路上不传送任何数据。而且这种情况是不可避免的。同一介质上的节点越多,冲突发生的概率越大。这种连接在同一导线上的所有节点的集合就是一个冲突域。冲突域内所有节点竞争同一带宽,一个节点发出的报文(无论是单播、组播、广播)其余节点都可以收到。广播域因为网络中使用了广播,会占用带宽,降低设备的处理效率,必须对广播加以限制。比如ARP使用广播报文从IP地址来解析MAC地址。全1MAC地址FFFF-FFFF-FFFF为广播地址,所有节点都会处理目的地址为广播地址的数据帧。这种一个节点发送一个广播报文其余节点都能够收到的节点的集合,就是一个广播域。传统的网桥可以根据MAC表对单播报文进行转发,对于广播报文向所有的接口都转发,所以网桥的所有接口连接的节点属于一个广播域,但是每个接口属于一个单独冲突域。02 以太网交换2.1 二层交换原理二层交换设备工作在OSI模型的第二层,即数据链路层,它对数据包的转发是建立在MAC(Media Access Control )地址基础之上的。二层交换设备不同的接口发送和接收数据独立,各接口属于不同的冲突域,因此有效地隔离了网络中物理层冲突域,使得通过它互连的主机(或网络)之间不必再担心流量大小对于数据发送冲突的影响。二层交换设备通过解析和学习以太网帧的源MAC来维护MAC地址与接口的对应关系(保存MAC与接口对应关系的表称为MAC表),通过其目的MAC来查找MAC表决定向哪个接口转发,基本流程如下:二层交换设备收到以太网帧,将其源MAC与接收接口的对应关系写入MAC表,作为以后的二层转发依据。如果MAC表中已有相同表项,那么就刷新该表项的老化时间。MAC表表项采取一定的老化更新机制,老化时间内未得到刷新的表项将被删除掉。设备判断目的MAC地址是不是广播地址:如果目的MAC地址是广播地址,那么向所有接口转发(报文的入接口除外)。如果目的MAC地址不是广播地址,根据以太网帧的目的MAC去查找MAC表,如果能够找到匹配表项,则向表项所示的对应接口转发,如果没有找到匹配表项,那么向所有接口转发(报文的入接口除外)。从上述流程可以看出,二层交换通过维护MAC表以及根据目的MAC查表转发,有效的利用了网络带宽,改善了网络性能。图1-6是一个二层交换的示例。图1-6 二层交换示例二层交换设备虽然能够隔离冲突域,但是它并不能有效的划分广播域。因为从前面介绍的二层交换设备转发流程可以看出,广播报文以及目的MAC查找失败的报文会向除报文的入接口之外的其它所有接口转发,当网络中的主机数量增多时,这种情况会消耗大量的网络带宽,并且在安全性方面也带来一系列问题。当然,通过路由器来隔离广播域是一个办法,但是由于路由器的高成本以及转发性能低的特点使得这一方法应用有限。基于这些情况,二层交换中出现了VLAN技术。2.2 三层交换原理三层交换机出现的背景早期的网络中一般使用二层交换机来搭建局域网,而不同局域网之间的网络互通由路由器来完成。那时的网络流量,局域网内部的流量占了绝大部分,而网络间的通信访问量比较少,使用少量路由器已经足够应付了。但是,随着数据通信网络范围的不断扩大,网络业务的不断丰富,网络间互访的需求越来越大,而路由器由于自身成本高、转发性能低、接口数量少等特点无法很好的满足网络发展的需求。因此出现了三层交换机这样一种能实现高速三层转发的设备。当然,三层交换机并不能完全替代路由器,路由器所具备的丰富的接口类型、良好的流量服务等级控制、强大的路由能力等仍然是三层交换机的薄弱环节。三层转发的原理目前的三层交换机一般是通过VLAN来划分二层网络并实现二层交换,同时能够实现不同VLAN间的三层IP互访。不同网络的主机之间互访的流程简要如下:源主机在发起通信之前,将自己的IP与目的主机的IP进行比较,如果两者位于同一网段(用网络掩码计算后具有相同的网络号),那么源主机直接向目的主机发送ARP请求,在收到目的主机的ARP应答后获得对方的物理层(MAC)地址,然后用对方MAC地址作为报文的目的MAC地址进行报文发送。当源主机判断目的主机与自己位于不同网段时,它会通过网关(Gateway)来递交报文,即发送ARP请求来获取网关IP地址对应的MAC,在得到网关的ARP应答后,用网关MAC作为报文的目的MAC发送报文。此时发送报文的源IP是源主机的IP,目的IP仍然是目的主机的IP。下面详细介绍一下三层交换的过程。如图1-7所示,通信的源、目的主机连接在同一台三层交换机上,但它们位于不同VLAN(网段)。对于三层交换机来说,这两台主机都位于它的直连网段内,它们的IP对应的路由都是直连路由。图1-7 三层转发原理示意网图中标明了两台主机的MAC、IP地址、网关,以及三层交换机的MAC、不同VLAN配置的三层接口IP。当 PC A向PC B发起PING时,流程如下:(假设三层交换机上还未建立任何硬件转发表项)根据前面的描述,PC A首先检查出目的IP地址10.2.1.2(PC B)与自己不在同一网段,因此它发出请求网关地址10.1.1.1对应MAC的ARP请求;L3 Switch收到PC A的ARP请求后,检查请求报文发现被请求IP是自己的三层接口IP,因此发送ARP应答并将自己的三层接口MAC(MAC Switch)包含在其中。同时它还会把PC A的IP地址与MAC地址对应(10.1.1.2与MAC A)关系记录到自己的ARP表项中去(因为ARP请求报文中包含了发送者的IP和MAC);PC A得到网关(L3 Switch)的ARP应答后,组装ICMP请求报文并发送,报文的目的MAC(即DMAC)=MAC Switch、源MAC(即SMAC)=MAC A、源IP(即SIP)=10.1.1.2、目的IP(即DIP)=10.2.1.2;L3 Switch收到报文后,首先根据报文的源MAC+VLAN ID更新MAC表。然后,根据报文的目的MAC+VLAN ID查找MAC地址表,发现匹配了自己三层接口MAC的表项,说明需要作三层转发,于是继续查找交换芯片的三层表项;交换芯片根据报文的目的IP去查找其三层表项,由于之前未建立任何表项,因此查找失败,于是将报文送到CPU去进行软件处理;CPU根据报文的目的IP去查找其软件路由表,发现匹配了一个直连网段(PC B对应的网段),于是继续查找其软件ARP表,仍然查找失败。然后L3 Switch会在目的网段对应的VLAN 3的所有接口发送请求地址10.2.1.2对应MAC的ARP请求;PC B收到L3 Switch发送的ARP请求后,检查发现被请求IP是自己的IP,因此发送ARP应答并将自己的MAC(MAC B)包含在其中。同时,将L3 Switch的IP与MAC的对应关系(10.2.1.1与MAC Switch)记录到自己的ARP表中去;L3 Switch收到PC B的ARP应答后,将其IP和MAC对应关系(10.2.1.2与MAC B)记录到自己的ARP表中去,并将PC A的ICMP请求报文发送给PC B,报文的目的MAC修改为PC B的MAC(MAC B),源MAC修改为自己的MAC(MAC Switch)。同时,在交换芯片的三层表项中根据刚得到的三层转发信息添加表项(内容包括IP、MAC、出口VLAN、出接口),这样后续的PC A发往PC B的报文就可以通过该硬件三层表项直接转发了;PC B收到L3 Switch转发过来的ICMP请求报文以后,回应ICMP应答给PC A。ICMP应答报文的转发过程与前面类似,只是由于L3 Switch在之前已经得到PC A的IP和MAC对应关系了,也同时在交换芯片中添加了相关三层表项,因此这个报文直接由交换芯片硬件转发给PC A;这样,后续的往返报文都经过查MAC表到查三层转发表的过程由交换芯片直接进行硬件转发了。从上述流程可以看出,三层交换机正是充分利用了“一次路由(首包CPU转发并建立三层硬件表项)、多次交换(后续包芯片硬件转发)”的原理实现了转发性能与三层交换的完美统一。03以太网交换应用场景如图1-8所示,某企业有IP电话、员工PC、网络打印机、移动终端、服务器等多种设备需要接入网络。图1-8 使用以太网技术组建企业网络示例可以使用以太网技术将众多的终端设备连接到网络,从而实现员工访问网络、拨打IP电话、员工PC访问服务器共享资源、通过网络实现远程打印、IT管理员统一管理等网络业务。发布于 2021-11-04 08:38网络工程师​赞同 19​​2 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录网络民工专注网络技术、欢迎给位读者相互交流,希望每一篇文章都能让您感兴趣,能留下您的脚印

什么是以太网? | 词汇表 | 慧与

什么是以太网? | 词汇表 | 慧与

跳转到主目录 Hewlett Packard Enterprise Hewlett Packard Enterprise 主页 HPE GreenLake 解决方案 产品 服务 学习 支持 联系 更多 登录 主页 HPE GreenLake 服务 支持 联系 搜索 关闭 主页 HPE GreenLake 解决方案 产品 服务 学习 支持 联系 中国 (ZH) HPE MyAccount 您的 HPE MyAccount 可为您提供: HPE 生态系统单点登录途径 个性化推荐 试用与其他试用版 以及其他更多专属权益 登录帐户 创建帐户 HPE MyAccount HPE MyAccount 我的书签 管理帐户 管理帐户 登出 登出 我的购物车 您的购物车目前是空的 前往 HPE 商店浏览、配置和订购。 立即购买 发生错误 尝试在 HPE 商店查看您的购物车,或稍后再查看。 查看购物车 HPE 生态系统 HPE GreenLake 云控制台 云服务 数据服务 Compute Ops Management Aruba Central HPE GreenLake 管理 管理帐户 管理设备 HPE 资源 支持中心 Financial Services 开发人员 社区 返回主菜单 解决方案 开放且安全的边缘到云平台,助您推进数据优先现代化进程 开放且安全的边缘到云平台,助您推进数据优先现代化进程 了解更多有关 HPE GreenLake 边缘到云平台的信息 边缘 连接边缘 掌控边缘到云的数据。 数据 将数据转化为智能洞见 单一数据事实来源,助您做出明智决策,为客户提供实用的建议。 AI 要让 AI 为您所用 挖掘数据的全部潜力,为您创造 AI 优势。 云 打造混合云 以您需要的方式提供混合云。 安全性 保护数据 安全保护到位。 所有产品和解决方案 产品类型 按主题分类的解决方案 行业 查看全部 返回主菜单 产品 边缘到云端平台 HPE GreenLake 通过 HPE GreenLake 边缘到云平台加速您的数据优先现代化步伐,无论应用和数据位于何处,均可享受云体验。 HPE GreenLake 通过 HPE GreenLake 边缘到云平台加速您的数据优先现代化步伐,无论应用和数据位于何处,均可享受云体验。 了解 HPE GreenLake 产品类型 Supercomputing Compute Storage Networking Software Services 产品品牌 HPE Cray Supercomputing HPE ProLiant Compute HPE Alletra Storage HPE Aruba Networking HPE Ezmeral Software HPE Services 特别推荐产品 HPE GreenLake for Networking HPE GreenLake for Block Storage HPE GreenLake for Private Cloud Enterprise HPE GreenLake for Compute Ops Management HPE GreenLake for Disaster Recovery HPE GreenLake for Backup and Recovery 所有产品和解决方案 产品类型 按主题分类的解决方案 行业 查看全部 返回主菜单 学习 关于 HPE 了解 HPE 企业社会责任 人才招聘 活动 认证与培训 HPE Education Services 免费的开发人员点播研讨会 免费的按需学习技术课程 资源和文档 客户成功案例 参考架构 规格概述 网络研讨会 查看全部 HPE GreenLake 入门 什么是边缘到云? HPE GreenLake 常见问题解答 亲自试用 HPE GreenLake Central 用户指南 以太网 主页 企业词汇表 - 关键定义 什么是以太网? Overview 概述 跳到 联系我们 Overview 概述 电子邮件销售 电子邮件销售 销售聊天 销售聊天 销售聊天 销售聊天 联系我们! 我们的销售专家竭诚为您服务 电子邮件销售 电子邮件销售 销售聊天 销售聊天 销售聊天 销售聊天 什么是以太网? 以太网是连接设备以建立局域网 (LAN) 的热门网络协议。该协议支持设备通过网络与另一台设备交换数据包以进行通信。以太网发明于 20 世纪 70 年代,自那以后,无论是处理距离还是速度都已大大提高。 以太网基于 CSMA/CD(具有冲突检测的载波侦听多路访问)协议而构建,当多个设备尝试同时发送数据时该协议有助于避免数据冲突。该协议用于控制网络流量并保证数据传输可靠。数据也是通过使用物理层技术的铜线或光纤连接来发送。 HPE Aruba CX 交换机 | HPE  Aruba EdgeConnect SD-WAN | HPE  HPE GreenLake 网络服务 (NaaS) Aruba Central  Aruba 接入点 HPE Aruba ClearPass Policy Manager  以太网有哪些用途? 以太网是专门用于将设备连接到一起以构成局域网 (LAN) 的网络技术,对许多环境(从小型企业到数据中心)中的有线网络连接而言,都是可靠高效的标准。 以太网用于各种用途,包括: 连接设备:用于将计算机、打印机、路由器和交换机之类的设备彼此连接,并连接到互联网,以便以在设备之间高效可靠地传输数据。 文件共享:以太网用于在网络上的设备之间传输文件。这样用户便可轻松共享项目数据并开展协作。 视频会议:以太网用于支持视频会议,以便允许用户与不同位置的其他用户实时沟通。这对于远程团队或拥有多处办公场所的企业来说非常实用。 网络游戏:以太网通常用于网络游戏,可靠快速的数据传输对享受良好的游戏体验至关重要。 数据存储:以太网用于将设备连接到网络连接存储 (NAS) 设备,从而可以集中存储数据并轻松访问多台设备中的数据。 以太网还用于网络管理和监控。  以太网还支持 SNMP(简单网络管理协议)之类的协议,从而允许网络管理员监控网络性能并诊断问题。 以太网的工作原理 以太网是一种使用软硬件混合连接设备以建立局域网 (LAN) 的网络技术。以下简要介绍了以太网的工作原理: 硬件:以太网通过利用网络接口卡 (NIC)、以太网电缆、交换机和集线器之类的实际硬件连接设备。每个网络设备都有专属 MAC 地址,用于在网络上标识设备。 协议:为规范网络流量及确保数据传输可靠性,以太网利用 CSMA/CD(具有冲突检测的载波侦听多路访问)协议。当多个设备尝试同时发送数据时,CSMA/CD 通过让设备发送自己的数据前监控网络流量来帮助减少数据冲突。当两个设备尝试同时传输数据时,它们都将注意到会发生冲突并将随后的尝试推迟一段不确定的时间。 数据传输:网络上的设备想与另一个设备交流数据,就会构建一个包含内容和来源及目标 MAC 地址的数据包。随后通过以太网线路将该包发送至目标设备。如果目标设备未连接到同一网络,该包将通过路由器传送直至到达其目的地。 数据接收:设备收到数据包时,将会检查目标 MAC 地址,查看其是否对应自己的 MAC 地址。如果 MAC 地址匹配,则接受该数据包并从中检索数据。如果 MAC 地址不符,则拒绝该数据包。 网络拓扑:以太网支持多种网络拓扑,包括星型、网格型和点对点网络。在点对点网络中,两个设备直接链接彼此。在星型网络中,设备链接到中央集线器或交换机。在网格网络中,设备在复杂的链接网络中彼此互连。 总之,以太网可以控制网络流量并确保数据在设备之间可靠传输。 什么是网络中的以太网? 以太网建立在多种规范基础之上,这些规范概括了网络的物理和数据连接层。诸如网络接口卡 (NIC)、以太网电缆、交换机和集线器等网络设备均由物理层定义。数据连接层指定网络设备如何与另一设备通信,以及数据如何通过网络传输。 在网络中,以太网用于执行多种任务,如设备连接、文件共享、视频会议、网络游戏和数据存储。对于多种应用和设置来说,以太网提供了一种可靠有效的数据传输方法。 总之,以太网是一种重要的网络技术,为各种网络设置和应用提供了坚实的基础。得益于可扩展性和适应性优势,以太网可满足从小型企业到大型数据中心的各类网络要求。 HPE 和以太网 HPE 以太网解决方案指多种网络产品和技术,旨在计算系统内部和系统之间实现高速数据通信和连接。这些解决方案设计用于满足现代数据中心、云计算环境和其他高性能计算应用的需求, 还用于提供快速可靠的数据传输,提升网络性能以及简化网络基础设施管理。 一些利用以太网的 HPE 解决方案示例包括: HPE GreenLake 网络服务 - 通过将所有硬件、软件和服务合并为单个月度订阅,将采购模式从资本支出式转换为运营支出式。快速部署有线、无线和 SD-WAN 网络以解决关键用例。 HPE Aruba CX 交换机 - 利用 AI 驱动的自动化和从边缘扩展到数据中心再云的交换机提供的内置安全性,简化部署并管理现代网络的复杂难题。 Aruba EdgeConnect SD-WAN - 通过直观的管理界面,从单一管理平台体验完整的广域网可观察性和控制力,使您能够集中定义、分配和执行策略,为广域网上的所有用户提供最高品质的体验。 Aruba Central -  体验基于云的网络解决方案,通过 AI 驱动的洞察、工作流程自动化以及边缘到云的安全性,对园区、分支机构、数据中心和远程办公位置的无线、有线和广域网基础设施进行统一管理。 Aruba 接入点 - 通过智能、快速且安全的业务连接,提高网络容量并增强 IT、用户和 IoT 体验。 Aruba ClearPass Policy Manager - 以零信任安全策略保护您的网络,以便采用混合工作场所计划、物联网设备和边缘计算。       我们可以为您提供哪些帮助? 搜索 hpe.com 搜索 hpe.com 搜索 hpe.com Buy 购买方式 Product 产品支持 Email 电子邮件销售 Chat 与销售人员交谈 致电慧与 联系 HPE 关注慧与 Linkedin X Facebook Youtube RSS 公司 公司 关于慧与 可及性 人才招聘 联系我们 企业责任 全球多元化及包容度 慧与现代奴隶透明化声明 (PDF) Hewlett Packard Labs 投资者关系 企业管理层 公开政策 相关信息: 相关信息: 人工智能 云计算 容器 机器学习 企业词汇表 新闻和活动 新闻和活动 新闻中心 HPE Discover 活动 网络研讨会 本地活动 合作伙伴 合作伙伴 Partner Ready Program Partner Ready Vantage 计划 寻找合作伙伴 认证 HPE GreenLake Marketplace 支持 支持 产品支持 软件和驱动程序 保修检查 增强型支持服务 教育与培训 产品回收与再利用 确认设备零件 社区 社区 HPE 社区 Aruba Airheads HPE Tech Pro Community 慧与开发人员 所有博客和论坛 客户资源 客户资源 客户实例 购买方式 金融服务 HPE 客户中心 电子邮件注册 HPE MyAccount 资源库 视频库 申请加入 Voice of the Customer 计划 关注慧与 Linkedin X Facebook Youtube RSS 中国 (zh) © 版权所有 2024 慧与发展有限责任合伙企业 隐私 使用条款 广告支持与 Cookie 网站地图